Java Network Programming

Java Network Programming

Study Guide

Professor Wanlei Zhou
School of Information Technology
Deakin University

Java Network Programming

Contents

0. UNIT OQUTLINE ..o

0.1. Objective

0.2. Text Books
0.2.1. Main Text Book
0.2.2. Reference Books

0.3. Assessment

1. JAVA LANGUAGE BASICS. ...t

1.1. Study Points

1.2. The Java Development Kit
1.2.1. The IDK
1.2.2. The Java Virtual Machine

1.3. Java Basics
1.3.1. Introductory Lessons on Java
1.3.2. Applets

1.4. Further Topicsin Java
1.4.1. Graphics and Colors

1.4.2. Animation, Image, Threads, Sounds and the Use of Swing

1.4.3. Events Handling
1.4.4. Abstract Windowing Toolkit

1.5. Java Versions and Network APIs
1.5.1. JavaVersions
1.5.2. Java Networking APIs

2. NETWORK COMMUNICATION AND THE CLIENT-SERVER MODEL

2.1. Study Points

2.2. Communication Protocol Architectures
2.2.1. The OSI Protocol Architecture
2.2.2. Internet Architecture

2.3. BSD Internet Domain Sockets
2.3.1. Overview
2.3.2. Network Layer: IP

11

11
11
12

12
12
13

14
14
14
14
14

15
15
15

17

17
17
18

19
19
20

Java Network Programming

2.3.3. Transport Layer: TCP and UDP
2.3.4. The Internet

2.4. The Next Generation Internet Protocol: | Pv6
2.4.1. Why IPv6?
2.4.2. IPv6 Features
2.4.3. Discussions on IPv6

2.5. The Client-Server Mode
2.5.1. The Basic Client-Server Model
2.5.2. Client-Server Cooperation and the Extensions to the Client-Server Model
2.5.3. Service Discovery

2.6. Communication M echanisms between Clientsand Servers
2.6.1. Factors Influence the Performance of a Communication Facility.
2.6.2. Basic Form of the Message Passing
2.6.3. Semantics of Message Passing
2.6.4. Remote Procedure Calls (RPC)

3. JAVA INPUT AND OUTPUT STREAMS ...

3.1. Study Poaints

3.2. Types of Streams
3.2.1. What are Streams?
3.2.2 Thejava.io Class Hierarchy

3.3. ThelnputStream and OutputStream Classes
3.3.1. The InputStream
3.3.2. The OutputStream
3.3.3. Examples

3.4. Filel/O Streams
3.4.1. Basics of Filel/O
3.4.2. Examples

3.5. The Sequencel nputStream, Buffered Stream and Data Stream
3.5.1. The Sequencel nputStream
3.5.2. Buffered 1/0
3.5.3. Data Streams
3.5.2. Examples

3.6. Readersand Writers
3.6.1. Basics
3.6.2. An Example

3.7. Piped 1/0O and Character Array and String 1/0

23
24

25
25
26
26

28
28
29
31

33
33
34
35
38

41

41
41
42

43
43

46
46
47

50
50
51
52
52

54

55

56

Java Network Programming

3.7.1. Piped I/O
3.7.2. An Example of Piped I/O
3.7.3. Character Array and String I/0O

4. CONNECTION-ORIENTED COMMUNICATION IN JAVA

4.1. Study Points

4.2. Introduction
4.2.1. Connection-Oriented Versus Connectionless Communication
4.2.2. The java.net Package
4.2.3. The Socket Class
4.2.4. The ServerSocket Class

4.3. A Simple Connection-Oriented Communication Example
4.3.1. Essential Components of TCP Communication
4.3.2. Implementing a TCP Client Program
4.3.3. Implementing a TCP Server Program

4.4. Variations on the Simple Communication Example
4.4.1. Exchange of Multiple Messages
4.4.2. Executing the Programs on Internet Hosts
4.4.3. Supporting Multiple Clients

5. DEVELOPING CLIENTS ..o

5.1. Study Points

5.2. TheClient and its Sockets
5.2.1. Types of Clients
5.2.2. The TCP socket for Clients
5.2.3. Reading from and Writing to a Socket for Echo

5.3. Dealing with HTTP Servers
5.3.1. The Hypertext Transfer Protocol
5.3.2. Getting Web Pages from a Web Server

5.4. Dealing with Servers of other Internet Protocols
5.4.1. A Finger Client
5.4.2. A DNS Client

5.5The URL Class
5.5.1. The Basics of the URL Class
5.5.2. Constructing a URL from its Component Parts
5.5.3. Other URL Constructors and Methods
5.5.4. Retrieve Datafrom a URL

56
56
58

61

61
61
62
63
66

68
68
68
70

71
71
74
76

78

78
78
79
80

82
82
83

85
86
88

88
88
90
91
92

Java Network Programming

5.6. The URL Connection Class 94
5.6.1. Basic Principles 94
5.6.2. A Simple URL Connection Example 94
5.6.3. Dealing with the MIME Header 95
5.6.4. The URLConnection Configuration 97

5.7. Handlersfor Contents and Protocols 98
5.7.1. What are Content and Protocol Handlers 98
5.7.2. Developing Content and Protocol Handlers 99

6. DEVELOPING SERVERS ...t e e e e 101

6.1. Study Points 101

6.2. The Server Socket Class 101
6.2.1 Basics of the ServerSocket Class 101
6.2.2. An Example 103
6.2.3. Use Telnet to Testing Servers 104

6.3. Issuesin Building Servers 105
6.3.1. Reading Data 105
6.3.2. Writing Data 105
6.3.3. Interacting with a Client 106
6.3.4. Paralldl Processing 107

6.4. Some Useful Servers 109
6.4.1. Testing Clients 109
6.4.2. Building a Web Server 111

7. CONNECTIONLESS COMMUNICATION IN JAVA ...ttt 112

7.1. Study Points 112

7.2. Connectionless Communication Basics 112
7.2.1. Why Datagrams 112
7.2.2. Overview of Datagrams 112
7.2.3. A Loca Port Scanner 114
7.2.4. Sending and Receiving UDP Datagrams 115

7.3. Simple Examples of Connectionless Communication 116
7.3.1. The Server 116
7.3.2. The Client 116
7.3.3. A Time Server Application 117

7.4. Some Datagram Applications 119
7.4.1. A Reliable UDP Packet Delivery Example 120
7.4.2. A Ping Client 123

Java Network Programming

8. PARALLEL PROCESSING IN JAVA ... 127
8.1. Study Points 127
8.2. Parallel Processing 127
8.2.1. Concurrency vs. Parallelism. 127
8.2.2. Thread Cooperation 127
8.2.3. Race Conditions 128
8.2.4. Deadlocks 129
8.3. Multithreading Basics 130
8.3.1 Basic Concepts 130
8.3.2. Simple Threading Examples 131
8.4. Multithreaded Servers 133
8.4.1. Adding Threading to Servers 133
8.4.2. Adding a Thread Pool to a Server 134
8.5. An Interesting Parallel Client-Server Application 136
8.5.1. The Chat Client 136
8.5.2. The Chat Server 138
9. DISTRIBUTED DATABASE APPLICATIONS USING JAVAoovvvviiinnnn 141
9.1. Study Paints 141
9.2. Web-Based Database 141
9.2.1. Why Web-Based Database? 141
9.2.2. The Two-tier Architecture of Web-based Databases 142
9.2.3. The Three-tier Architecture of Web-based Databases 142
9.2.4. The Hybrid Architecture of Web-based Databases 144
9.3. An Overview of Java Database Connectivity (JDBC) 144
9.3.1. What isJDBC 144
9.3.2. Using JIDBC 145
9.4. Developing JDBC Applications: Using the Access Database 145
9.4.1. Prepare the Database 145
9.4.2. Create the Database Tables 146
9.4.3. Populate the Tables 148
9.4.4. Print Columns of Tables 150
9.4.5. Execute a Select Statement (one table) 151
9.5. Developing JDBC Applications: Using the Oracle Database 152
9.5.1. Using the Oracle Database from Windows OS. 152
9.5.2. Create, Populate and Update the CUSTOMER Table 153

9.6. A JDBC Application Example 155

Java Network Programming

9.6.1. Prepare the Access Database and the HTML File
9.6.2. Prepare the Java Applet Programs

9.6.3. Prepare the Main Server Program

9.6.4. Prepare the Database A ccess Programs

9.6.5. Compile and Test the Programs

10. DEVELOPING DISTRIBUTED APPLICATIONS USING JAVA RMI AND

10.1. Study Points

10.2. Web-Based Client-Server Computing
10.2.1. The Proxy Computing Model
10.2.2. The Code Shipping Model
10.2.3. The Remote Computing Model
10.2.4. The Agent-Based Computing Model

10.3. RM1 Overview
10.3.1. RMI Architecture
10.3.2. Implementing Distributed Programs using RMI

10.4. Smple RMI Examples
10.4.1. A Date Service
10.4.2. A Demo Service

10.5. Interfaces and Classes from RM|-Related Packages
10.5.1. Thejava.rmi Package
10.5.2. The java.rmi.registry Package
10.5.3. Thejava.rmi.server Package
10.5.4. The java.rmi.activation Package
10.5.5. The java.rmi.dgc Package

10.6. An Interesting RM1 Application
10.6.1. The Chat Server and Its Implementation
10.6.2. The Chat Client

10.7 CORBA
10.7.1. What is CORBA?
10.7.2. The CORBA Architecture
10.7.3. The Interface Definition Language
10.7.4. An Example of CORBA for Java

11. JAVA SERVLETS AND JAVABEANS ...,

11.1. Study Points

11.2. Introduction of Servlets

155
155
161
162
165

166

166
166
166
167
167

167
167
168

169
169
171

173
173
174
174
176
177

178
178
179

180
180
181
184
184

187

187

Java Network Programming

11.2.1. What is a Servlet?
11.2.2. Servlets Security and Applications
11.2.3. Servlet Life Cycle

11.3. Developing Servlets
11.3.1. Downloading and Installing Servlets
11.3.2. Basic Techniques for Using Servlets
11.3.3. More Examplesin using Servlets

11.4. Java Beans
11.4.1. Introduction of the Component Model
11.4.2. Overview of Beans Component Model
11.4.3. Downloading and Installing the BDK

11.5. Using Java Beans
11.5.1. Using the BeanBox
11.5.2. Beans by JavaSoft and IBM
11.5.3. Assembly of Beans

12. NETWORK SECURITY ..coiiiiiiiit e

12.1. Study Points

12.2. Secure Networks
12.2.1. What is a Secure Network?
12.2.2. Integrity Mechanisms and Access Control

12.3. Data Encryption
12.3.1. Encryption Principles
12.3.2. Decryption

12.4. Security Mechanisms on the Internet
12.4.1. Digital Signatures
12.4.2. Packet Filtering
12.4.3. Internet Firewall

12.5. Java Secure M odel and the Security API
12.5.1. The JDK 1.2 Security Architecture and Security Policy Specification
12.5.2. The ClassLoader and the SecurityManager
12.5.3. Using Java Security API: An Example

12.6. Secur e Sockets

187
188
188

189
189
189
189

190
190
192
193

193
193
196
196

198

198
198
198

199
199
200

201
201
202
202

203
203
204
205

209

Java Network Programming

0. Unit Outline

0.1. Objective

The objective of this unit is to provide an up-to-date knowledge of network programming
in Java to students. It covers most, if not all, aspects of Java network programming
facilities. First, the lower level Java networking is overviewed which includes
communication with sockets, Web URLS, and datagrams. Second, higher-level object-
oriented networking is addressed which includes communication with homogenous RMI
(remote method invocation) and heterogeneous CORBA (common object request broker
architecture) in IDL (interface definition language). The unit also covers topics related to
JDBC, concurrent programming, security, servlets, and Java Beans.

At the end of this unit, students should be familiar with the basic concepts, the
architectures, the protocols, the advantages and limitations, and the recent devel opment
of various Java network programming technologies. The knowledge gained from the
study of this unit will enable students to create network applications using the Java
language. Students will aso have adequate knowledge in tracking the current and future
development in network programming in Java.

The Study Guide is divided into three parts. The first part (Sessions 1 and 2) overviews
the fundamental knowledge required for this unit, including Java basics, communication
systems, and the client-server model for network computing. The second part (Sessions 3,
4, 5, 6, 7, and 8) introduces the techniques used in Java network computing, including
Java streams, connection-oriented communication in Java, developing Java programs for
clients and servers, connectionless communication in Java, and multithreading in Java.
The third part (Sessions 9, 10, 11 and 12) addresses some advanced issues in Java
networking, such as JDBC, Java RMI and CORBA, Java Servlets and Java Beans, and
Java security.

0.2. Text Books

0.2.1. Main Text Book

Couch, Justin.
“Java 2 networking,” Justin Couch, New Y ork : McGraw-Hill, ¢1999 ([JC]).

0.2.2. Reference Books

. “Beginning Java Networking,”, C. Darby et a., Wrox Press Ltd., 2001, ISBN: 1-
861005-60-1 ([BJIN]).

. “Java Network Programming.” 2" ed., E. R. Harold, O’ Reilly, 2000. ISBN: 1-
56592-870-9 ([INP)).

. “Java Network Programming”, 2" ed., M. Hughes, M. Shoffner, and D. Hamner,

Manning Publishing Co., 1999, ISBN: 1-884777-49-X [HSH]

Java Network Programming

. “Java Distributed Computing”, J. Farley, O'Relilly, 1998, ISBN: 1-56592-206-9
[FAR].

. “Java 2 Developer’s Handbook”, P. Heller and S. Roberts, Sybex, 1999, ISBN: 0-
7821-2179-9 [Java2H]

. “Java 1.2 Unleashed”, J. Jaworski,; Macmillan Computer Publishing, 1998,
ISBN: 1575213893 [Java2U]

0.3. Assessment

* Progressive assessment 40%
* Examination 60%

10

Java Network Programming

1. Java Language Basics
1.1. Study Points

* Understand the basic principles of the Java programming language.
» Beableto complete small programsin Java

» Befamiliar with object-oriented programming using Java.

e Befamiliar with Java Applets.

* Beableto design ssimple user interfaces using Java AWT.

Reference: (1). Reader 1. “Learning Java Programming by Examples’, by Wanlei Zhou,
Lessons 1 through 9. (2). [Java2H]: Part 1, Chapters 1-5. (3). [Java2U] Chapters 1-10.

1.2. The Java Development Kit

Although this unit assumes that students have a basic knowledge in Java, students
without Java knowledge can still study this unit without much trouble. | have assembled a
specia document (Reader 1) for those who have little knowledge in Java. Experiences
show that most students with a basic programming knowledge in any other languages
such as C or C++ can have a good understanding in Java in a week through the help of
the document. Students with a solid knowledge in Java can skip this session. One
comment about the example programs in Reader 1: they were accumulated over a period
where Java versions have been fast evolving. Therefore, some of the programs may
include deprecated methods for later Java versions.

1.2.1. The JDK

The Java Development Kit™ (JDK), created by Sun’s JavaSoft subsidiary, is Java's base
software environment. It includes all the software and documentation necessary to create
Java applications or applets, and commands used to compile, run, package, and debug
Java programs. Figure 1.1 shows how a Java program is created.

¢ K Apple Ezxecute ;g: appletiparer

Ot a Java-enabled hrowser

»
pplicatio
o Compile: Jawa class file: p.class
Java soutee: pjava
Javar pjava
R

Execute using: java

Figure 1.1. Creation of Java programs

11

Java Network Programming

The JDK is available on various operating systems in which the Java Core Application
Program Interface (API), a standard library of classes for Java applications and applets, is
guaranteed to execute on al Javaimplementations.

Java programming language has gone through a number of versions. Many examples of
this unit are based on Java 2, aka JDK 1.2, the currently widely used version. Some
features introduced in this unit need JDK 1.3. Currently Sun makes a Java Devel opment
Kit (JDK) freely avalable for Windows operating systems and Solaris. You can
download it from http://java.sun.com/products/jdk/1.2/.

The JDK 1.2 API consists of 57 packages, al of which are in the Core API. Of the 53
Core API packages, 22 are part of the Java Foundations Classes (JFC). The Core API is
the minimum subset of the Java API that must be supported by the Java Platform. All
classes and interfaces that are part of the JDK but are not in the Core API are in the
Standard Extension API. The JFC are Core API classes and interfaces that support GUI
development for applets and applications.

1.2.2. The Java Virtual Machine

All compiled Java programs are Java classes. The Java virtua machine (VM) is a
software implementation of a CPU designed to run Java programs. Since VM is
typically not implemented in hardware, hence the term of virtual.

The VM is a software layer that enables Java to be independent of physica CPU type.
Therefore, Java programs can be executed on any platform as long as the VM is
installed.

Java programs can be applets or pure Java applications. Java applications are Java
programs that do not require a WWW browser. These applications run under the JDK’s
java command and are started from a user’'s command line or shell script. A Java
application should contain a public static void main method (equivalent to a main()
functionin C).

Java applets are Java programs that are downloaded from WWW sites and executed in
web browsers. This is the most popular use of Java programs to deliver network-based
applications through WWW sites and web browsers. Instead of a main() method, applets
use methods suited to downloaded programs that display output in a web browser
window.

1.3. Java Basics

1.3.1. Introductory Lessons on Java

Students are encouraged to read lessons 1, 2, 3, and 4 of Reader 1 and test run dl the
programs in these four lessons. In lesson 1, we introduce a number of “first” Java
programs, including a few simple examples of Java application and applet. We then
introduce the concepts of object-oriented programming using Java and basic font in Java.

In lesson 2, we introduce some basic components of the Java language, including the
dates, strings, arrays, loops. We aso introduce some mechanisms for parameter passing,
argument handling, and type converting.

12

Java Network Programming

In lesson 3, we outline the principles of object-oriented programming in Java, including
the constructors and inheritance. In object-oriented programs data is represented by
objects. Objects have two sections, fields (instance variables) and methods. Fields tell
you what an object is. Methods tell you what an object does. These fields and methods
are closealy tied to the object's real world characteristics and behavior. When a program is
run messages are passed back and forth between objects. When an object receives a
message it responds accordingly as defined by its methods. Most Java programs are
organised using the object-oriented concepts.

In lesson 4, we emphasis on the principles of applet design since applets are the major
mechanism of network programming in Java. We concentrate on topics of the HTML
pages related to applets, the aignment and passing parameters.

Each topic of alesson is illustrated using simple examples. Students are encouraged to
test run these examples and understand the Java components and statements illustrated in
these examples.

1.3.2. Applets

According to Sun, "An applet isasmall program that is intended not to be run on its own,
but rather to be embedded inside another application....The Applet class provides a
standard interface between applets and their environment." There are four definitions of

applet:
e A small application

» A secure program that runs inside a web browser
* A subclass of java.applet. Applet
e Aninstance of asubclass of java.applet.Applet

Applets are executed in the “sandbox” of the Java virtua machine of a web browser. An
applet can:

e Draw pictures on aweb page

* Create anew window and draw init.

» Play sounds.

* Receiveinput from the user through the keyboard or the mouse.

*« Make a network connection to the server from which it came and can send to and
receive arbitrary data from that server.

Anything you can do with these abilities you can do in an applet. However, an applet
cannot:

* Write data on any of the host's disks.

* Read any data from the host's disks without the user's permission. In some
environments, notably Netscape, an applet cannot read data from the user's disks
even with permission.

13

Java Network Programming

« Ddetefiles.

* Read from or write to arbitrary blocks of memory, even on a non-memory-
protected operating system like the MacOS. All memory access is strictly
controlled.

« Make a network connection to a host on the Internet other than the one from
which it was downloaded.

e Call the native API directly (though Java APl cals may eventually lead back to
native API cals).

* Introduce avirus or trojan horse into the host system.

* Anapplet is not supposed to be able to crash the host system. However in practice
Javaisn't quite stable enough to make this claim yet.

1.4. Further Topicsin Java

We use five lessons (lessons 5, 6, 7, 8, and 9) in the Reader 1 document to introduce
some further topics in Java programming.

1.4.1. Graphics and Colors

In lesson 5, we introduce the topic on graphics and colours, in particular, we illustrate the
use of lines and rectangles, the creation of polygons, elipses, and arcs, and the use of
different fonts and colours. Apart from examples on each feature, we also use an example
to illustrate the use of al these features.

1.4.2. Animation, Image, Threads, Sounds and the Use of Swing

In lesson 6, we introduce the use of animation, images, threads, sound and the use of
Swing. This lesson consists of examples of a digital clock, the colurs swirl, the use of
images and the adjustment of images, some simple animation mechanisms, such as a
bouncing circle and an animated cat, and also some techniques in using sound.

1.4.3. Events Handling

In lesson 7, we introduce the use of events and interactivity in Java. We use examples to
illustrate the techniques to draw spots, normal lines and scribble lines. We then introduce
the mechanism of keyboard control and event handling in different versions of Java JDK.

1.4.4. Abstract Windowing Toolkit

In lesson 8, we introduced the use of the abstract windowling toolkit (AWT), a graphics
tool package provided by the JDK. In particular, we introduced the use of buttons, check
boxes, radio buttons, choice menus, and text fields. We then introduce the mechanisms
for flow layout, grid layout, and border layout. In addition to examples for each topic, we
finally use an example of a color switcher to illustrate the use of al these features.

In lesson 9, we introduce some advanced usage of the AWT. In particular, we illustrate
the use of text areas, the mechanism to scroll alist of text, the use of dliding bar, smple

14

Java Network Programming

pop-up windows, pop-up windows with dialogue, and pop-up windows with dialogu and
menu. We aso introduce the technique to create links inside applets in this lesson.

Reader 1 also contains other lessons related to networking programming. You can skip
these lessons since they will be covered in more details in the following sessions.

1.5. Java Versonsand Network APIs

1.5.1. Java Versions

Java 1.0 gave the programmer the basic networking capability, such as connecting to
other computers and listening to connection requests from other computers. On top of the
basic capability, some APIs, such as the Universal Resource Locator (URL) handlers, for
high-level Internet related protocols were provided. However, using the Java 1.0 to create
large-scale applications was difficult since it was hard to customize connections..

Java 1.1 added more control over the connections to the APIs. These options allowed the
Java programmer to build networked programs with a similar quality as programs built
using native code. It aso added the ability to create customized network handlers while
still retaining the high-level URL handler capabilities. The third useful part added to the
Javal.1 version isthe ability to create multicast connections within Java code.

Java 1.2 (Java 2) introduced few changes in terms of network computing capability. The
only real new change was the new fine-grain security model, but in day-to-day
application programming, it is not much of an issue. In Java 2, the changes moved to the
supporting APIs. APIs that relied on the core networking capabilities had a lot more
functionality added to them.

Javaversion 1.3 is an enhancement to Java 2, Standard Edition (J2SE). It includes a new
Java virtual machine (VM)--the Java HotSpot Client--which is aimed at improving client
performance in an enterprise desktop.. The Java HotSpot Client VM is totaly new, the
emphasis is having it tuned for client performance--reducing application start-up time,
how quickly an application comes to life on a desktop. Java 1.3 also added support for
lightweight directory access protocol (LDAP), which gives a desktop client directory
connectivity to access information across the enterprise, said Connell. J2SE 1.3 also has
new Java applet caching functionality, which will enable a developer to deploy a Web
application more quickly by downloading and storing Java applets on a local hard drive
for immediate access.

1.5.2. Java Networking APIs

Java networking APIs are provided in a series of layered abstractions on which the
programmer can decide to work. Java’'s basic networking capabilities are split between
the java.net and the java.io packages. Programmers are able to use these packages to
establish and communicate over a network connection and pass moderately complex data
over it.

Once a connection has been established, there are a number of opportunities for the
programmer, e.g., defining custom protocols, using existing protocols, or building a

15

Java Network Programming

higher-level API on top of the basic services. Java provides a number of these APIs. At
the bottom of the heap are the URL content handlers contained in the java.net package.

Next in the line is the Remote Method Invocation (RMI), which uses java.net and java.io
to implement its functionality as well as a good ded of native code. RMI comes in a
number of packages: java.rmi, java.rmi.dgc, java.rmi.registry, and java.rmi.server. RMI
uses the network facilities to pass references to Java classes over the network.

Another two Java techniques, the Java servlets and Java Beans, can be regarded as
function-oriented mechanisms. Servlets can be viewed as server-side applets in which
they responds to client requests via the HTTP protocol. Java Beans are based on the
component-based system concepts, in which reusable components can be distributed
across the network.

16

Java Network Programming

2. Networ k Communication and the Client-Server
M odel

2.1. Study Points

Understand the Internet protocol architecture.

Understand the basic concepts of the TCP/IP protocol suit.
Understand the IPv6 concepts.

Understand the basic client-server model.

Understand the extensions to the basic client-server model and the service discovery
mechanisms.

Be familiar with the mechanismsin client-server communication
Understand the different semantics of message passing.
Understand the RPC mechanism.

Reference: (1). Any book on computer networks. (2). A. Goscinski and W. Zhou, “The
Client-Server Model and Systems’, Technical Report, Deakin University, TR C97/04,
1997.

2.2. Communication Protocol Architectures

2.2.1. The OSI Protocol Architecture

The OSI (Open System Interconnection) Reference Model was developed by 1SO
(International Standards Organisation) as a model for implementing data communication
between cooperating systems. It has seven layers.

Application: providing end-user applications.

Presentation: trandlating the information to be exchanged into terms that are
understood by the end systems.

Session: for the establishment, maintenance, and termination of connections.
Transport: for reliable transfer of data between end systems.
Network: for routing the data to its destination and for network addressing.

Data link: preparing data in frames for transfer over the link and error detection and
correction in frames.

Physical: defining the electrical and mechanical standards and signaling requirements
for establishing, maintaining, and terminating connections.

Figure 2.1 depicts the OS| process and peer-to-peer communication, where SDU
represent service data unit, Hi (i =2 ... 7) headers of layer i, and T2 isthe trailer for layer

17

Java Network Programming

2.
User User
Dty Peer—to—pesr commmmication
Application e -------mmmmm oo o = | Application
Pregemtation l.__________________. -] | Fresemntation
|H5 | SO | Hessi e e e - | Session
|H4 | SO | Transport L 3 A T =] | Transport
M ear ok
[H3 | SDU | Network oo ok |aoss] | Netwak
; Diata Link .
|H2| snU |'I2| Data Link = - - 2 = - - 2] | DataLink
: Physical = - -] Fhysical o= - - <] Physical
| Bits |

Source node Intermediate node Destination node
Figure 2.1 OSI process and peer-to-peer communication

2.2.2. Internet Architecture

Internet is the largest data network in the world. It is an interconnection of several packet-
switched networks and has a layered architecture. Figure 2.2 shows the comparison of
Internet and OSI architectures.

Application

Application
Prezentation
Sesslon

Transport

(host—to—host)

Transport
Diata Link M etorork & ccess
Fhysical Fhysical

Figure 2.2 Comparison of Internet and OSI architectures
Internet layers:

18

Java Network Programming

* Network access layer: It relies on the data link and physica layer protocols of the
appropriate network and no specific protocols are defined.

e Internet layer: The Internet Protocol (IP) defined for this layer is a smple
connectionless datagram protocol. It offers no error recovery and any error packets
are ssimply discarded.

» Transport layer: Two protocols are defined: the Transmission Control Protocol (TCP)
and the User Datagram Protocol (UDP). TCP is a connection-oriented protocol that
permits the reliable transfer of data between the source and destination end users.
UDP is a connectionless protocol that offers neither error recovery and nor flow
control.

e User process layer (application): It describes the applications and technologies that
are used to provide end-user services.

2.3. BSD Internet Domain Sockets

The ARPANET sponsored by the Advanced Research Projects Agency (ARPA) and
developed during late 1960s and early 1970s is a milestone for computer networks. In the
early 1980s, a new family of protocols was specified as the standard for the ARPANET.
Although the accurate name for this family of protocolsisthe “DARPA Internet protocol
suite,” it is commonly referred as the TCP/IP protocol suite, or just TCP/IP.

The Internet domain sockets on BSD UNIX use the TCP/IP protocol suite as the
communication protocols among processes generally located on different computers
across a network. We introduce the TCP/IP in this section.

2.3.1. Overview

Communications between computers connected by computer networks use well-defined
protocols. A protocol isaset of rules and conventions agreed by al of the communication
participants. As we have mentioned, in the OSI reference model, the communication
protocols are modelled in seven layers. Layered models are easier to understand and
make the implementation more manageable. A protocol suite is defined as a collection of
protocols from more than one layer that forms a basis of a useful network. This collection
isalso called a protocol family. The TCP/IP protocol suite is an example.

There are many protocols defined in the TCP/IP protocol suite. We are going to describe
three of them: the Transport Control Protocol (TCP), the User Datagram Protocol (UDP)
and the Internet Protocol (IP). If using OSI reference model the TCP and UDP protocols
are Transport layer protocols, while the IP protocol is a Network layer protocol. Figure
2.3 illustrates the relationship of these protocols and their positions in the OSI reference
model.

19

Java Network Programming

User . Usar Higher
ot — — =54
F"mﬁgr:am F’r':f Fanm Layars
|————-.||| _________ T | Transport
|| TCP UDP = = LUDP| TP ™= Layar
[= — P Mertw rk
Layer
Hardware |. ___ _ _| Hardware III_IIaaIa Link
Interface Inte LAs
 § §
Phyzical
Layer

Figure 2.3. The Layered TCP/IP protocol suite

The TCP protocol is a connection-oriented protocol that provides a reliable, full-duplex,
byte stream for interprocess communications. The UDP protocol, on the other hand, is a
connectionless protocol that provides an unreliable datagram service: there is no
guarantee that UDP datagrams ever reach their intended destination. Acknowledgement
must be used in order to provide reliable services when using the UDP protocol .

2.3.2. Network Layer: IP

The IP protocol is connectionless and unreliable. It is based on internet datagrams. The
protocol takes a datagram from the transport layer (for example, from the TCP protocol).
A datagram is up to 64k bytes long and it may be part of a longer message. Each
datagram is transmitted over the network independently so the communication Is
connectionless. During transmission, a datagram may be lost or may be further
fragmented into smaller units (caled IP packets) as it goes through the protocol layers.
When all the IP packets of a datagram finally arrive the destination computer, they are
reassembled to form the datagram and then transferred to the transport layer of the
destination site. If any of the IP packets of a datagram are lost or corrupted, the entire
datagram is discarded by the destination site so the IP protocol is therefore unreliable
because it cannot guarantee the delivery of a datagram.

The IP datagram consists of a header and a text part. The header includes information
such as the type of service, the length of the header, the length of the text part, the
address of the source computer, the address of the destination computer, and other
information.

20

Java Network Programming

It is the IP layer that handles the routing through networks. The Internet address is used
to identify networks and computers and is used in an IP datagram header to denote the
source and destination computer addresses. An Internet address has 32 bits and encodes
both a network 1D number and a host ID number. Every host on a TCP/IP internet must
have a unique Internet address. The network ID numbers are assigned by some kind of
authority, e.g., the Network Information Center (NIC) located at SRI Internationa. While
the host ID numbers are assigned locally.

The common notation of an Internet address is to use 4 bytes, as shown in the following:
field_1.field 2. field_3.field 4
Where 0 <= field; <= 255;0 (FFy6), 1 <= i <=4.

Depending on the network’s class (described below), the network number can be fieldy,
or field;.field, or field,.field,.field;. That means the host number can be
field,.fields.fieldy, fields.field, or field,.

Networks are classified into 3 classes, as listed in the next Table.

Class Binary number of field; Network ID (decimal)
A 000 000-0111 111 0-126
B 1000 000 —-1011 1111 128 — 191.254
C 1100 0000 — 1101 1111 192 — 223.254.254

A brief description of these classes follows:

Class A: networks are the largest networks with more than 65,536 hosts. A class A
network’ s network 1D number isfield;.

Class B: networks are mid-size networks with host IDs ranging from 256 to 65,536. A
class B network’s network ID number isfield;.field,.

Class C: networks are the smallest networks with up to 256 hosts A class C network’s
network 1D number isfield,.field,.fields.

Figure 2.4 illustrates the Internet address formats of these three network classes.

21

Java Network Programming

I |
| 1By | 1 Byt
I I
Clhss A |0 Network H+st l.
I |
I | I
I I
Class B[10 MNefwork Hgst
I I
| I
Clze C| 110 ! N&mrmjlk Hest
| T
I

Figure 2.4. Internet network classes

For example, if we have an Internet address 98.15.12.63, we can tell that it isaclass A
network because field; is within the range of 0 - 126. Its network ID number is 98 and
host ID number is 15.12.63. If we have an Internet address 130.194.1.106, we can tell
that it is a class B network because the field;.field, is within the range of 128 - 191.254.
Its network 1D number is 130.194 and host ID number is 1.106.

Some |P addresses have significant meanings. For example, the address of 127.0.0.1 is
the address of the local machine. It is used for allowing IP communications to the local
machine so that sockets and other systems may run even the machine is isolated from the
network.

It isevident that an Internet address can only be assigned to one host. But a host can have
severa Internet addresses. This is because that in some situations, we want a host to be
connected to several networks.

Although an Internet address clearly specifies the address of a host, few persons want to
use Internet addresses directly: they are too hard to remember. Domain Name System
(DNS) is used to name host addresses in more human-oriented way and to find the
Internet addresses corresponding to machine names.

The DNSisa hierarchical naming system: its name space is partitioned into sub-domains,
which can themselves be further divided. The DNS is also a distributed system: the name
space is delegated to local sites that are responsible for maintaining their part of the
database. Programs called name servers manage the database.

The DNS name space can be represented as a tree, with the nodes in the tree representing
domain names. A fully qualified domain name is identified by the components (nodes) of
the path from the domain name to the root. A component is an arbitrary string of up to 63
octets in length; the length of a fully qualified domain name is limited to 256 octets. By
convention, a domain name is written as a dot-separated sequence of components, listed
right to left, starting with the component closet to the root. The root is omitted from the
name. Thus, wan_res.cm.deakin.edu.au is a fully qualified domain names. It is certainly
easier to be remembered than the corresponding Internet addresses 139.130.118.102.

22

Java Network Programming

DNS name space is divided into zones of authority, and name servers have complete
control of the names within their zones (domains). For easier management of domains, a
large domain can be split into smaller sub-domains, and name servers can delegate
authority to other name servers for sub-domains. For example, if edu.au represents the
domain of all educational institutions in Australia, then deakin.edu.au and anu.edu.au are
its two sub-domains. Queries for DNS information within sub-domain deakin.edu.au are
first dealt with by the name server of this sub-domain. If this name server cannot answer
aquery, the query is then directed to the name server of edu.au domain. At last, the name
server of the root can answer the query.

2.3.3. Transport Layer: TCP and UDP

As we have shown in Figure 2.3, user processes interact with the TCP/IP protocol suite
by sending and receiving either TCP data or UDP data. To emphasise that the IP protocol
is used, we sometimes refer them as the TCP/IP or UDP/IP protocols.

TCP provides a connection-oriented, reliable, full-duplex, byte-stream service, similar to
a virtual circuit, to an application program. UDP, on the other hand, provides a
connectionless, unreliable datagram service to an application program.

Aswe mentioned in the previous section, the Internet address is used to identify networks
and computers. In order to let many processes use the TCP or UDP simultaneously (these
processes may reside on any computers of a network), both protocols use 16-bit integer
port numbers for identifying data associated with each user process. The association of
port numbers and user processes last as long as the communication, so the following 5-
tuple uniquely identifies a communication:

» the protocol (TCP or UDP),

» theloca computer’s Internet address,

» thelocd port number,

» theforeign computer’s Internet address,
» theforeign port number.

For example, if we have a communication using TCP protocol. The server is on a host
with domain name of wan_res.cm.deakin.edu.au (Internet address 139.130.118.102),
using port number 5100. The client is on a host with domain name of
sky3.cm.deakin.edu.au (Internet address 139.130.118.5), using port number 5101. The 5-
tuple which uniquely defines the communication is:

{tcp, 139.130.118.102, 5100, 139.130.118.5, 5101}

Because the host name is easier to understand and there are some system calls to convert
between a host name and its Internet address, the above 5-tuple can then be written as:

{tcp, wan_res.cm.deakin.edu.au, 5100, sky3.cm.deakin.edu.au, 5101}

Because wan_res.cm.deakin.edu.au and sky3.cm.deakin.edu.au are within the same sub-
domain, we can even write the 5-tuple as:

{tcp, wan_res, 5100, sky3, 5101}

23

Java Network Programming

There are some restrictions in using port numbers. In TCP and UDP, port numbers in the
range 1 through 255 are reserved. All well-known ports (some commonly used utilities
use these ports) are in this range. For example, the File Transfer Protocol (FTP) server
uses the well-known port number 21 (decimal). Some operating systems also reserve
additional ports for privileged usages. For example, 4.3BSD reserves ports 1-1023 for
superuser processes. Only port numbers of 1024 or greater can be assigned by user
processes.

A TCP protocol entity accepts arbitrarily long messages from user processes, breaks them
into datagrams of up to 64k bytes, and sends them to the IP layer. Before the red
communication happens, a connection must be set up between the sender and the
recipient. After the communication, the connection must be disconnected.

As the IP layer does not guarantee the proper delivery of a datagram, it is the
responsibility of the transport layer to ensure that a datagram arrives at the destination
properly using time-out and retransmission techniques. Also as datagrams are transmitted
independently, the datagrams of a message may arrive at the destination out of order and
it is also the TCP protocol’s responsibility to reassemble them into the message in the
proper sequence.

Each datagram submitted by the TCP to IP layer contains a TCP header and a data part.
The whole TCP datagram is viewed by the IP as data only and an IP header is added to
form an IP datagram. The TCP header contains the source port number, the destination
port number, the sequence number, and other information.

The TCP protocol has a well-defined service interface. There are primitives used to
actively and passively initiate connection, to send and receive data, to gracefully and
abruptly terminate connections, and to ask for te status of a connection.

A UDP protocol entity aso accepts arbitrarily long messages from user processes, breaks
them into datagrams of up to 64k bytes, and sends them to the IP layer. Unlike the TCP
protocol, no connection is involved and to guarantee of delivery or sequencing. In effect,
UDP is simply a user interface to IP. A header is also added into the datagram by UDP,
which contains the source port number and the destination port number.

2.3.4. The Internet

The current “Internet” can be defined as "the collection of al computers that can
communicate, using the Internet protocol suite, with the computers and networks
registered with the Internet Network Information Center (InterNIC)." This definition
includes al computers to which you can directly send Internet Protocol packets (or
indirectly, through afirewall).

Internet Protocol enables communication between computers on the Internet by routing
data from a source computer to a destination computer. However, computer-to-computer
communication only solves half of the network communication problem. In order for an
application program, such as a mail program, to communicate with another application,
such as a mail server, there needs to be a way to send data to specific programs within a
computer.

24

Java Network Programming

Ports, or addresses within a computer, are used to enable communication between
programs. An application server, such as a Web server or an FTP server, listens on a
particular port for service requests, performs whatever service is requested of it, and
returns information to the port used by the application program requesting the service.

Popular Internet application protocols are associated with well-known ports. The server
programs that implement these protocols listen on these ports for service requests. The
well-known ports for some common Internet application protocols are shown in Table
2.1.

Port | Protocol

21 File transfer protocol (ftp)
23 | Telnet protocol (telnet)
25 | Simple Mail Transfer Protocol (SMTP)

80 | Hypertext Transfer Protocol (HTTP)
Table 2.1. Common Internet application protocols and their ports

2.4. The Next Generation Internet Protocol: | Pv6

2.4.1. Why IPv6?

The primary motivation for change from 1Pv4 to IPv6 is the limited address space. The
32-bit IP address can only include over a million networks in the Internet. At the current
growth rate, each of the possible network prefixes will soon be assigned and no further
growth will be possible.

The second motivation for change comes from requirements of new applications,
especialy applications that require real-time delivery of audio and video data. The
current I P has limited capabilities for routing real -time data.

Chalenges faced by IPv4 can be summarized:
e Address spaces
0 growth of the Internet. Maximum: 4 billion
0 when will addresses run out? Estimates: 2005
o single IP addresses for devices
* Mobile Internet
0 Internet services from everywhere
0 Removing location dependency
e Security
o End-to-end encryption

Data Integrity, authentication Requirements for the new protocol can be summarized as
follows:

25

Java Network Programming

Support billions of hosts

Reduce size of routing tables

Simplify protocol, process packets faster

Provide better security (authentication & privacy)
Better QoS (particularly for real-time data)

Aid multicasting, anycasting

Make it possible for a host to roam without changing its address

2.4.2. IPv6 Features

IPv6 retains many design features of IPv4. It's connectionless. IPv6 has the following
new features:

Address size: Instead of 32, each IPv6 address is 128 hits. The address space is large
enough for many years of growth of Internet.

Header format: The IPv6 header has a completely format compared to |Pv4 headers.

Extension header: Unlike IPv4, which uses a single header format for all datagrams,
IPv6 encodes information into separate headers. A datagram of 1Pv6 contains a base
header followed by 0 or more extension headers, followed by data.

Support for audio and video. IPv6 includes a mechanism that alows a sender and
receiver o establish a high-quality path through the underlying network and to
associate datagrams with that path.

Extensible protocol. Unlike 1Pv4, IPv6 does not specify all possible protocol features.
Instead, the designers have provided a scheme that alows a sender to add additiona
informaion to a datagram. The extension makes |Pv6 more flexible than I1Pv4.

2.4.3. Discussions on IPv6

Why does IPv6 use separate extension headers?

Economy: Partitioning the datagram functionality into separate headers is economica
because it saves space. Having separate headers in |Pv6 makes it possible to define a
large set of features without requiring each datagram header to have at least one field
for each feature.

Extensibility: When adding a new feature, existing IPv6 protocol headers can remain
unchanged. A new next header type can be defined as well as a new header format.

The chief advantage of placing new functionality in a new header liesin the ability to
experiment with a new feature before changing all computers in the Internet.

IPv6 characteristics

Practically unlimited address space
Simplification of packet header

26

Java Network Programming

e Optional header fields (better support for options)

e Authentication and Privacy (more Security)

* More attention to type of service
Plug & Play - Better Configuration optionsAdditional features of 1Pv6:

» Network management: auto configuration

o Plug-and-Play.
0 Automate network address renumbering
0o DHCP support is mandated: Every host can download their network
configurations from a server at startup time
0 Address changes are automated
» Stateless ; Routers advertise prefixes that identify the subnet(s)
associated with a link ; Hosts generate an “interface token” that
uniquely identifies an interface on a subnet ; An address is formed by
combining the two.
= Stateful ; Clients obtain address and / or configuration from a DHCP
server ; DHCP server maintains the database and has a tight control
over address assignments.
* MobileIPv6:
o |Pv6 Mobility is based on core features of |Pv6
0 The base IPv6 was designed to support Mobility
o Mobility isnot an “Add-on” features
= All IPv6 Networks are |Pv6-Mobile Ready
= All IPv6 nodes are IPv6-Mobile Ready
= All IPv6 LANs/ Subnets are IPv6 Mobile Ready
0 |IPv6 Neighbor Discovery and Address: Autoconfiguration allow hosts to
operate in any location without any special supportNo single point of failure
(Home Agent)
0 More Scalable : Better Performance

» Lesstraffic through Home Link
» Lessredirection/ re-routing (Traffic Optimisation)l Pv6 Security:

» Security features are standardized and mandated. All implementations must offer

o

them
No Change to applications

e Authentication (Packet signing)

» Encryption (Data Confidentiality)

27

Java Network Programming

e End-to-End security Model

0 ProtectsDHCP

0 ProtectsDNS

0 Protects IPv6 Mobility

0 Protects End-to-End traffic over IPv4 networks2.5. The Client-Server
M odel

2.5.1. The Basic Client-Server Model

Figure 2.5 shows a basic client-server model. In this case, the client and server processes
execute on two different computers. They communicate at the virtual (logical) level by
exchanging requests and responses. In order to achieve this virtual communication
physical messages between these two processes are sent. This implies that operating
systems of computers and a communication system of a distributed computing system are
actively involved in the service provision.

Bequest

< Gtear 2, " Server

Eesponze

Figure 2.5. The basic client-server model
A more detailed client-server model has three components:

* Sarvice: A service is a software entity that runs on one or more machines. It
provides an abstraction of a set of well-defined operations.

* Server: A server isaninstance of aparticular service running on a single machine.

e Client: A client is a software entity that exploits services provided by servers. A
client can but does not have to interface directly with a human user.

Figure 2.6 illustrates the involvement of a communication facility and the operating
system in aclient-server communication.

Client Computer Server Computer
request -
. . - Tesponse T . Comrnndcation
T o
Qperdting System Operating System
1 1 ! 1
Commundeation Facility CD].TIIfI.U.'é'IiC&ﬁDI:. Facility
1 : ! :
' i request message ! i Physical
Metwork ,___ZZZTTTCTTTTTTTIIICIIIIII L ican

responge message Comrnunication

28

Java Network Programming

Figure 2.6. The physical implementation of the client-server model
The client-server model has the following advantages:

e Simplicity
e Modularity
* Extensbility
e Hexibility

The three major problems of the client-server model are:
» A server failure may affect the service
* A server isapotential bottleneck
e Thecost/reliability trade-off

2.5.2. Client-Server Cooperation and the Extensions to the Client-Server Model

Clients and servers can cooperate in various forms.
» Singleserver. Figure 2.7 illustrates a printer server providing servicesto n clients.

Client Compurer Client Computer Benrer Compurer Client Compurer Client Computer
1 2 i n
I - I
! [!
T

A | | [|

Figure 2.7. A single service example

» Chain-based servers. Figure 2.8 shows an example of a chain of cooperating
servers.

Client Computer Server Computer Server Computer
1 2

Eequest1 Request
Server

Response 1 Response 2

Figure 2.8. An example of achain of cooperating servers
e Multiple servers
o parald execution of programs on a cluster of workstations
0 distributed databases
0 cooperative workgroups
0 service multiplication to increase performance, reliability and availability
e Group servers. Figure 2.9 shows a number of structures of group servers.

29

Java Network Programming

() Peer group (b} Client- server group (c) Diffusion gronp ((d) Hierarchical geonp
Figure 2.9. Group structures

Two issues have to be considered in group communication:
» Group membership discovery: the current status and the membership of the group.
» Group operétions: create, destroy, join and leave.

A client and server can cooperate either directly or indirectly. In the former case there is
no additional entity that participates in exchanging requests and responses between a
client and a server. Indirect cooperation in the client-server model requires two additional
entities, called agents, to request a service and to be provided with the requested service.

Figure 2.10 shows such an extension.

Request

Besponse

Figure 2.10. Indirect client-server cooperation

The role of these agents can vary from a ssimple communication module which hides
communication network details to an entity which is involved in mediating between
clients and servers, resolving heterogeneity issues, and managing resources and
cooperating servers.

The three-tier client-server architecture has the following components:

» User interface and presentation processing. These components are responsible for
accepting inputs and presenting the results. We say these components belong to
the client tier;

e Computational function processing. These components are responsible for
providing transparent, reliable, secure, and efficient distributed computing. They
are also responsible for performing necessary processing to solve a particular
application problem. We say these components belong to the application tier.

» Data access processing. These components are responsible for accessing data
stored on external storage devices (such as disk drives). We say these components
belong to the back-end tier.

30

Java Network Programming

Figure 2.11 shows some example of three-tier configuration.

Computer

User interface / presentation ¢ Computational fonctions

(&) Cenmralised configuration

Client Cormpurer | | Server Compurer | | Client Compurter | Seneer Compurer | | Clent Compurer | | S erneer ©omputer

User
Drata access pam——
Drata access Corﬁfiﬁiiunal Corﬁfiﬁiiunal Drata access

¢ t t t t

(b) Two-ter configurations

Client Computer Berver Computer Data

Berver Computer
User
interface Data access

' ' '

() A three—ter configuration

Computational
furction

Figure 2.11. Examples of three-tier configurations
Advantages of the three-tier model:
* Better transparency.
» Better scalability.
» Better concurrency, flexibility, reusability, load balancing, and reliability.

2.5.3. Service Discovery

To invoke a desired service a client must know both whether there is a server which is
able to provide this service and its characteristics, and its name and location. This is the
issue of service discovery. In the case of a simple distributed computing system, where
there are only a few servers, there is no need to identify an existence of a desired server.
Information about all available servers is available a priori. This implies that service
discovery is restricted to locating the server which provides the desired service. On the
other hand, in a large distributed computing system which is a federation of a set of
distributed computing systems, with many service providers who offer and withdraw
these services dynamically, there is a need to learn both whether a proper service (e.g., a
very fast colour printer of high quality) is available at a given time, and if so its name and
location.

Service discovery is achieved through the following modes:

e Computer address (number) is hardwired into client code, as shown in Figure
2.12.

31

Java Network Programming

Client Computer Server Computer
request(<3, C2=) N
responsel<C, C1=)
Computer Address Computer Address
1 o2

Figure 2.12. Service discovery: hardwired computer addresses
* Broadcast is used to locate servers, asillustrated in Figure 2.13.

Client Computer Senver Somputer Client Computer Client Computer
1 3C 2 3
request(®) |
response(Cl)
o3 O3 O3 O3

Here I am <33, 3=

)

e Server location lookup performed via a name server, asillustrated in Figure 2.14.

Where 1z 37

Figure 2.13. Service discovery: broadcast approach

Marme Jerver Somputer Client Computer Senver Cormputer
3C
request(3)
CClierC 7 T Savas O
responselC)
o8 OF o
| Whereis®
<30, B

Figure 2.14. Service discovery: name server and server location lookup
* Broker-Based Location Lookup, as shown in Figure 2.15 (a) and (b).

32

Java Network Programming

1 2
1 e | L csmes
C Client "L "7 Broker 3= 3 < Client T —y
4 . .
({a) Forward broker (b} Drirect broker

Figure 2.15. Service discovery: broker-based location lookup

Another important issue in client-server computing is the interoperability. Interoperability
means the ability of two or more software components to cooperate despite differencesin
language, interface, and execution platform. There are two aspects of client-server
interoperability. a unit of interoperation, and interoperation mechanisms. The basic unit
of interoperation is a procedure. However, larger-granularity units of interoperation may
be required by software components. Furthermore, preservation of temporal and
functional properties may also be required.

There are two major mechanisms for interoperation:

* interface standardisation: the objective of this mechanism is to map client and
server interfaces to a common representation.

» interface bridging: the objective of this mechanism is to provide a two-way
mapping between a client and a server.

2.6. Communication M echanisms between Clientsand Servers

2.6.1. Factors Influence the Performance of a Communication Facility.

The client-server model is common to use in network computing systems, this implies
that communication between the clients and servers cooperating by exchanging requests
and responses must be fast. Furthermore, the speed of communication between remote
client and server processes should not be highly different from the speed between local
processes. Network computing systems based on clusters of workstations and the Internet
do not share physical memory. Thus, requests and responses are sent in the form of
messages.

There is a set of factors that influence the performance of a communication facility.
Firstly, the speed of a communication network ranging from slow 10 Mbps to very fast
Gbps. Secondly, communication protocols which span the connection-oriented protocols
such as OSI and TCP which generate considerable overhead to specialised fast protocols.
Thirdly, the communication paradigm, i.e, the communication model supporting
cooperation between clients and servers and a communication facility support provided to
deal with the cooperation.

The two issues in the communication paradigm:

e two communication patterns. one-to-one and oneto-many (group)
communication

33

Java Network Programming

e two interprocess communication techniques. message-passing and remote
procedure call (RPC).

Message passing between remote and local processes is visible to the programmer. The
flow of information is unidirectional from the client to the server. However, in advanced
message passing, such as structured message passing or rendezvous, information flow is
bidirectional, i.e, a return message is provided in response to the initia request.
Furthermore, message passing is a completely untyped technique.

The RPC technique is based on the fundamental linguistic concept known as the
procedure call. The very general term remote procedure call means a type-checked
mechanism that permits a language-level call on one computer to be automatically turned
into a corresponding language-level call on another computer. Message passing is
invisible to the programmer of RPC. RPC requires a transport protocol to support the
transmission of its arguments and results. It is important to note that the term remote
procedure call is sometimes used to describe just structured message passing. Remote
procedure call primitives provide bidirectional flow of information.

2.6.2. Basic Form of the Message Passing

Message-oriented communication is a form of communication in which the user is
explicitly aware of the message used in communication and the mechanisms used to
deliver and receive messages. The basic message passing primitives are:

e send(dest, src, buffer), the execution of this primitive sends the message stored in
buffer to a server process named dest. The message contains a name of a client
process nhamed src to be used by the server to send a response back.

* receive(client, buffer), the execution of this primitive causes the receiving server
process to be blocked until a message arrives. The server process specifies by
providing the client name of a process(es) from whom a message is desired, and
provides a buffer to store an incoming message.

Figure 2.16 shows the time diagram of the execution of these two primitives.

Client Senver

) receive(Client, buffer)
send(Berver, Client, message) hlocked

The Server iz executing on the

receive(Server, buffer) message and process aresponse

blocked

“‘/_/_,_,-
v L]

Time Time

| send(Client, Senver, response)

Figure 2.16. Time diagram of the execution of the message-passing primitives

Java Network Programming

2.6.3. Semantics of Message Passing

There are severa different semantics of the message passing primitives:
e direct or indirect communication - ports;
» blocking versus nonblocking primitives;
» buffered versus unbuffered primitives,
« reliable versus unreliable primitives; and
e structured forms of message passing based primitives.
Direct or indirect communication

* direct communication: both the sender and the receiver have to name one another
in order to communicate.

e port and indirect communication: A port is a protected kernel object into which
messages may be placed by processes and from which messages can be removed,
i.e., the messages are sent to and received from ports.

Blocking versus nonblocking primitives
Figure 2.17 shows the blocking and nonblocking send primitives.

Client munning Client nynoing
Trap to kernel Trap to kernel
A Process blocked |
sendl) sendl) i .
Client blocked message CDPIE-Ij. to
kernel buffer
¥
Client blocked | Message being sent Client ruming
Client moming T rerumed from kemel
Process unblocked
Time Time

(a) (b

Figure 2.17. Send primitives. (a) blocking; (b) unblocking
Features of primitives
* With nonblocking primitives:

0 send returns control to the user program as soon as the message has been
gueued for subsequent transmission or a copy made (these alternatives are

35

Java Network Programming

determined by the method of cooperation between the network interface
and the processor);

o when a message has been transmitted (or copied to a safe place for
subsequent transmission), the program is interrupted to inform it that the
buffer may be reused;

o the corresponding receive primitive signals a willingness to receive a
message and provides a buffer into which the massage may be placed; and

0 when amessage arrives, the program is informed by interrupt.
* With blocking primitives:

o for unreliable blocking, send does not return control to the user until the
message has been sent;

o for reiable blocking send does not return control to the user until the
message has been sent and an acknowledgment received; and

0 receive does not return control until a message has been placed in the
buffer.

Buffered versus unbuffered primitives

» Buffered message passing systems are more complex than unbuffered message
passing based systems, since they require creation, destruction, and management
of the buffers.

» Buffered message passing systems generate protection problems, and cause
catastrophic event problems, when a process owning a port dies or is killed.

» Unbuffered message passing systems require synchronisation (rendezvous) for a
message transfer to take place.

Figure 2.18 illustrates these two types of primitives.

i > || ey || e || CBewa)

o8 o3 o8 o3 [Buffer |
[] | |

(a) (b

Figure 2.18. (a) Unbuffered: messages are discarded before the server issues the receive
primitive; (b) buffered: messages are buffered in an OS areafor alimited time.

Reliable versus unreliable primitives

* A reliable send primitive handles lost messages using internal retransmissions,
and acknowledgments on the basis of timeouts.

36

Java Network Programming

* Reliable and unreliable receive differ in that the former automatically sends an
acknowledgment confirming message reception, whereas the latter does not.

Reliable and unreliable primitives are contrasted in Figure 2.19.

sendl)—_,, sendl) 1y,
Timeont
send() ——
. \'\\. receiver)
Tirneot s sendl)
send() ——

\ receivel)

Tirneont {/f/) sendl)

(&) (b

Figure 2.19. (a) Unrdliable; (b) reliable}

From the message delivery point of view, message passing may have the following types
of delivery semantics.

o at-least-once
* exactly-once
Figure 2.20shows these semantics.

Client Serer Client Server
request request
Tirneout Timeonut
_¥ | request _¥ | request
Tirneout _ Timeout Table of
1 m Results of the execution ki m J—
of the requests conld
be different request
o erponsd —emponst
acknowled germpnt

(a) (b}

Figure 2.20. Message passing delivery semantics. (a) at-least-once; (b) exactly-once

37

Java Network Programming

2.6.4. Remote Procedure Calls (RPC)

RPC is based on the conventional procedure call model and the communication is
transparent. The executing of aremote procedure call is

call service_name (value_args, result_args)}
Figure 2.21 illustrates an RPC example of aread call.

Client cornputer Herver computer
Client
program
Herver
read
0 = % e
Pack —| receivel)
pararnerers Unpack | .p
send() paratneters—-
receivel] |=H Pack S
Unpack pararerers
parameters | SE,II.E].I::I
1 1
Cormrnurdcation netiwork

Figure 2.21. An RPC example: aread call

Properties of remote procedure calls.

* A transparent remote procedure cal implementation must maintain the same
semantics as that used for local procedure calls.

» The level of static type checking (by the compiler) applied to loca procedure calls
applies equally to remote procedure calls.

» All basic data types should be allowed as parameters to a remote procedure call.

e The programming language that supports RPC should provide concurrency control
and exception handling.

e A programming language which uses RPC must have some means of compiling,
binding, and loading distributed programs onto the network.

* RPC should provide a recovery mechanism to deal with orphans when a remote
procedure call fails.

In order to provide transparency, RPC uses the approach of stubs. The interactions
between the client, the client-stub, the RPC communication package (RPC Routine), the
server-stub, the server involved in aremote procedure call is as Figure 2.22.

38

Java Network Programming

Caller Computer Callee Computer
Local return Client process Local call EIVEY process
call —swrork ——= re
10 1 I &
T I
[CP4 Client - stub CF1] OF2 Server-stub OF3]
o] 2 41 7
- Tramsport Layer -
RPC Routine RPC Routine
- walt w——— . .
receive transmit receive transmnit
L)

3 |

8

Figure 2.22. The components of the system, and their interaction for asimple RPC. OP1.:
marshal parameters, generate RPC id, set timer to reply; OP2: unmarshal parameters,
note RPC id; OP3: marshal results, set timer for ACK of reply; OP4: unmarshal results,
send ACK.

RPC Routine is responsible for retransmissions, acknowledgments, datagram routing, and
protection. It can be implemented through message passing.

Parameters and resultsin RPCs:
e passing parameters by value
e passing parameters by reference (pointers)

Marshalling is a process performed both when sending the call (request) as well as when

sending the result, in which three actions can be distingui shed:

e Taking the parameters to be passed to the remote procedure and results of executing
the procedure;

e Assembling these two into a form suitable for transmission among computers
involved in the remote procedure call; and

» Disassembling them on arrival

Client server binding: to bind an RPC stub to the right server and remote procedure.
* Naming and addressing, e.g., through a naming server.
e Bindingtime

e Compiletime

e Link time

o Cadltime

Error recovery issues:
* Four events that may cause an unsuccessful return to a client's request
» thecall (request) messageis|ost;
* theresult (response) message is|ost;
» the server computer crashes and isrestarted; and
» theclient computer crashes and is restarted.
» Three different semantics of RPC and their mechanisms can be identified to deal with
problems generated by these four events

39

Java Network Programming

e maybe call semantics
» at-least-once call semantics
» exactly-once call semantics.

40

Java Network Programming

3. Java Input and Output Streams
3.1. Study Points

* Understand the principles and the hierarchy of Java streams.

» Understand the usages of various Java streams.

» Beableto construct simple stream /O programs.

* Beableto use streamsto construct simple networking programs.

Reference: (1). [INP]: Chapter 4. (2). [Java2H]: Chapter 9. (3). [Java2U] Chapter 17. (4)
[HSH]: Chapters 5-13.

3.2. Typesof Streams

3.2.1. What are Streams?

Input and Output (1/0) is organised differently in Java than it isin most other languages.
I/O isacore part of any networking programs since it is responsible for moving data from
one system to another.

I/0 in Java is built on streams. A stream is a high-level abstraction representing a Java
connection to a communication channel, a file, or a memory buffer, and is the basis of
most Java network communications. Basically it is a sequence of data of undetermined
length. A Java stream is composed of discrete bytes. The bytes may represent chars or
other kinds of data.

Almost all the classes that work directly with streams are part of the javaio package.
There are two types of streams:. Input streams (java.io.InputStream) read data and Output
streams (java.io.OutputStream) write data. These are abstract base classes for many
different subclasses with more specialized abilities. Generally speaking, streams may
originate from the following situations:

» Console: System.out is an OutputSream; specifically it's a PrintSream. There's a
corresponding System.in which is an InputSream used to read data from the console.

» Files: Data for streams can aso come from files. We can use the File class and the
FilelnputSream and FileOutputStream classes to read and write data from files.

» Networking: Network connections commonly provide streams. When you connect to
a web or ftp or some other kind of server, you read the data it sends from an
InputSream connected from that server and write data onto an OutputSream
connected to that server.

e Programs. Java programs themselves produce streams. ByteArraylnputStreams,
ByteArrayOutputSreams, StringBufferInputSreams, PipedinputSreams, and
PipedOutputStreams all use the stream metaphor to move data from one part of a Java
program to another.

41

Java Network Programming

3.2.2 The java.io Class Hierarchy

Figure 3.1 identifies the java.io class hierarchy. As described in the previous section, the
InputSream, OutputStream, Reader, and Writer classes are the magjor components of this
hierarchy. Other high-level classes include the File, FileDescriptor, RandomAccessFile,
ObjectStreamClass, and StreamTokenizer classes.

InputStream
FilterInputStream
BufferedInputStream
DatalnputStream
LineMumberInputStrean
PushbackInputStream
ByteArrayInputStream
FilaInputStraam
ObjectInputStream
objectInputStrean GetField(nested)
PipedInputStream
SequencelnputStream
StringBufferInputStream
QutputStream
FilteroutputStream
Bufferediutputitrean
Datadutputstream
PrintStream
ByteArrayOutputStream
FileQutputStream
ObjectOutputStrean
ObjectOutputStream PutFisld{nested)
PipedOutputstream
Reader
BufferedReader
LineNumberReader
ChararrayReader
FilterReader
PushbackReader
InputstreamReader
FileReader
PipedReader
StringReader
Writer
BufferedWriter
ChararrayWriter
FilterWriter
OutputStreamnWriter
FileWriter
FipedWriter
PrintWriter
StringWriter
File
RandomAccessFile
FileDescriptor
FilePermission
ObjectStreamClass
ObjectStreamFiald
SerializablePermission
StreamTokenizer

Figure 3.1. The classes of the java.io hierarchy
The InputSream and OutputSream classes have complementary subclasses. For
example, both have subclasses for performing 1/0 via memory buffers, files, and pipes.

The InputStream subclasses perform the input and the OutputStream classes perform the
output.

42

Java Network Programming

Filters are objects that read from one stream and write to another, usually altering the
data in some way as they pass it from one stream to another. Filters can be used to buffer
data, read and write objects, keep track of line numbers, and perform other operations on
the data they move. Filters can be combined, with one filter using the output of another as
itsinput. Y ou can create custom filters by combining existing filters.

The Reader classis similar to the InputStream class in that it is the root of an input class
hierarchy. Reader supports 16-bit Unicode character input, while InputSream supports 8-
bit byte input.

The Writer class is the output analog of the Reader class. It supports 16-bit Unicode
character output.

The File class is used to access the files and directories of the loca file system. The
FileDescriptor class is an encapsulation of the information used by the host system to
track files that are being accessed. The RandomAccesskile class provides the capabilities
needed to directly access data contained in afile. The ObjectSireamClass class is used to
describe classes whose objects can be written (serialized) to a stream. The
SreamTokenizer classis used to create parsers that operate on stream data.

3.3. ThelnputStream and OutputStream Classes

3.3.1. The InputStream

The InputSream class has seven direct subclasses. The ByteArraylnputStream class is
used to convert an array into an input stream. The SreamBufferInputSream class uses a
SreamBuffer as an input stream. The FilelnputStream class allows files to be used as
input streams. The ObjectinputSream class is used to read primitive types and objects
that have been previously written to a stream. The PipedlnputStream class allows a pipe
to be constructed between two threads and supports input through the pipe. The
Sequencel nputStream class allows two or more streams to be concatenated into a single
stream. The FilterInputStream class is an abstract class from which other input-filtering
classes are constructed.

java.io. | nput Streamis an abstract class that contains the following basic methods for
reading raw bytes of data from a stream.

public abstract int read() throws | OException
public int read(byte[] data) throws | CException
public int read(byte[] data, int offset, int length) throws | OException
public | ong skip(long n) throws | CException
public int available() throws | OException
public void close() throws | OException
public synchronized void nmark(int readlimt)
public synchronized void reset() throws | CException
publ i ¢ bool ean mar kSupported()

Notice that amost al these methods can throw an | CExcepti on. This is true of pretty
much anything to do with input and output.

43

Java Network Programming

3.3.2. The OutputStream

The OutputSream class hierarchy consists of five direct subclasses. The
ByteArrayOutputStream, FileOutputSream, ObjectOutputStream, and
PipedOutputStream classes are the output complements to the ByteArraylnputStream,
FilelnputSream, ObjectinputSream, and PipedinputSream classes. The
FilterOutputSream class provides subclasses that complement the FilterlnputStream
classes.

The BufferedOutputStream class is the output analog to the BufferedlnputStream class. It
buffers output so that output bytes can be written to devices in larger groups. The
DataOutputSream class implements the DataOutput interace. This interface
complements the Datalnput interface. It provides methods that write objects and
primitive data types to streams so that they can be read by the Datalnput interface
methods. The PrintSream class provides the familiar print () and println() methods
used in most of the sample programs that you've devel oped so far in this book. It provides
anumber of overloaded methods that simplify data output.

Thej ava. i 0. Qut put St reamclass sends raw bytes of data to atarget such as the console
or anetwork server. Like InputSream, OutputStream s an abstract class.

public abstract void wite(int b) throws | CException

public void wite(byte[] data) throws | OException

public void wite(byte[] data, int offset, int Iength) throws | OException
public void flush() throws | OException

public void close() throws | OException

Thewr it e() methods send raw bytes of datato whomever is listening to this stream.

Sometimes output streams are buffered by the operating system for performance. In other
words, rather than writing each byte as it's written the bytes are accumulated in a buffer
ranging from several bytes to several thousand bytes. Then, when the buffer fills up, all
the data is written at once. The f1 ush() method forces the data to be written whether or
not the buffer isfull.

3.3.3. Examples

Here's a ssmple program (Echo. j ava) that echoes back what the user types at the
command line using the basic r ead() method of the | nput St r eamclass:

i nport java.io.*;

public class Echo {
public static void main(String[] args) {
echo(Systemin);

}

public static void echo(lnputStreamin) {
try {
while (true) {
/1 Notice that although a byte is read, an int
/1 with value between 0 and 255 is returned.

Java Network Programming

/1 Then this is converted to an | SO Latin-1 char
/1 in the sane range before being printed.

int i = in.read();
/1 -1 is returned to indicate the end of stream
if (i == -1) break;

/1 without the cast a nuneric string |like "65"
/1 would be printed instead of the character "A"
char ¢ = (char) i;

Systemout.print(c);

}

}
catch (1 OException e) {
Systemerr.println(e);
}
Systemout.println();
}
}

The following program (Ef fi ci ent Echo. j ava) is a more efficient version of Echo that
uses avai | abl e() to test how many bytes are ready to be read, creates an array of
exactly that size, reads the bytes into the array, then converts the array to a St ri ng and
printsthe St ri ng:

i nport java.io.*;
public class EfficientEcho {

public static void main(String[] args) {
echo(Systemin);
}
public static void echo(lnputStreamin) {
try {
while (true) {
int n =in.available();
if (n>0) {
byte[] b = new byte[n];
int result = in.read(b);
if (result == -1) break;
String s = new String(b);
Systemout. print(s);
Y/l end if
} /1 end while
} // end try
catch (1 Oexception e) {
Systemerr.println(e);
}
}
}

The following ByteArrayl OApp.java program creates a ByteArrayOutputSream object,
outSream, and an array, s, that contains the text "This is a test." to be written to the
stream. Each s character is written, one at a time, to outSream. The contents of
out st r eamare then printed, along with the number of bytes written.

i nport java.l ang. System

i nport java.io.ByteArrayl nput Stream
i mport java.io.ByteArrayCQutput Stream
i mport java.io.| OException;

public class ByteArrayl OQApp {

45

Java Network Programming

public static void nmain(String args[]) throws | OException {

/1 Create ByteArrayQutputStream obj ect

Byt eArrayQut put St r eam out Stream = new Byt eArrayQut put Strean()
String s = "This is a test.";

/'l Wite output to stream

for(int i=0;i<s.length();++i)

outStreamwite(s.charAt(i));

Systemout. println("outstream "+out Stream

Systemout.println("size: "+outStream size())

Byt eArrayl nput Stream i nStream

inStream = new Byt eArrayl nput Strean{out Stream toByteArray())

/1 Determine how many input bytes are avail able

int inBytes = inStream avail abl e()

Systemout.println("inStream has "+i nBytes+" avail abl e bytes");

byte inBuf[] = new byte[inBytes];

/1 Read input into a byte array

int bytesRead = inStreamread(inBuf, 0,i nBytes)

System out. println(bytesRead+" bytes were read");

Systemout.println("They are: "+new String(inBuf));

}
}

A ByteArraylnputStream object, inStream, is created by invoking the t oByt eArray()
method of outStream to create a byte array that is used as an argument to the
ByteArraylnputStream constructor. The avai | abl e() method is used to determine the
number of available input bytes stored in the buffer. This number is stored as inBytes and
is used to alocate a byte array to store the data that is read. The read() method is
invoked for inStream to read inBytes worth of data. The actual number of bytes read is
stored in bytesRead. This number is displayed, followed on the next line by the bytes that
were read from inSream, as follows:

outstream This is a test.
size: 15

i nStream has 15 avail abl e bytes
15 bytes were read

They are: This is a test.

3.4. Filel/O Streams

3.4.1. Basics of File I/O

Java supports stream-based file input and output through the File, FileDescriptor,
FilelnputStream, and FileOutputStream classes. It supports direct or random access 1/0
using the File, FileDescriptor, and RandomAccessFile classes. Random access 1/0O is
covered later in this chapter. The FileReader and FileWriter classes support Unicode-
based file /0.

The File class provides access to file and directory objects and supports a number of
operations on files and directories. The FileDescriptor class encapsulates the information
used by the host system to track files that are being accessed. The FilelnputStream and
FileOutputStream classes provide the capability to read and write to file streams.

Thejava. i o. Fi | el nput St r eamclass represents an InputSream that reads bytes from a
file. It has the following public methods:

46

Java Network Programming

public FilelnputStream(String nane) throws Fil eNot FoundException
public FilelnputStream(File file) throws Fil eNot FoundExcepti on
public FilelnputStrean(FileDescriptor fdj)
public native int read() throws | CException
public int read(byte[] data) throws | CException
public int read(byte[] data, int offset, int length) throws | OException
public native |long skip(long n) throws | CException
public native int available() throws | OException
public native void close() throws | OException
public final FileDescriptor getFD() throws | OException

Except for the constructors and get FDX() , these methods merely override the methods of
the same name in j ava.io. I nput Stream You use them exactly like you use those
methods, only you'll end up reading datafrom afile.

Thej ava. i o. Fi | eQut put St r eamclass represents an OutputStream that writes bytesto a
file. It has the following public methods:

public FileQutputStrean(String nanme) throws | OException
public FileQutputStream(String nanme, bool ean append) throws | OException
public FileQutputStrean(File file) throws | OException
public FileQutputStrean(FileDescriptor fdbj)
public native void wite(int b) throws | CException
public void wite(byte[] data) throws | OException
public void wite(byte[] data, int offset, int Iength) throws | OException
public native void close() throws | CException
public final FileDescriptor getFD() throws | CException

Except for the constructors and get FD() , these methods merely override the methods of
the same name in j ava.io. Qut put Stream You use them exactly like you use those
methods, only the output iswritten into afile.

3.4.2. Examples

The following example is a program to copy a file, and also defines a static copy()
method that other programs can use to copy files.

i nport java.io.*;

public class FileCopy {
/** The main() nmethod of the standal one program Calls copy(). */
public static void main(String[] args) {
if (args.length != 2) /1 Check argunents
Systemerr.println("Usage: java FileCopy <source file> <destination>");
el se {
/1 Call copy() to do the copy, and display any error nessages it throws.
try { copy(args[O], args[1]); }
catch (1 OException e) { Systemerr.println(e.getMssage()); }
}
}

/**

* The static nethod that actually perforns the file copy.
* Before copying the file, however, it perfornms a lot of tests to nake
* sure everything is as it should be.

47

Java Network Programming

*/

public static void copy(String fromname, String to_name) throws | OException{
File fromfile = new File(fromnane); // Get File objects fromStrings
File to file = new Fil e(to_nane);

/1l First make sure the source file exists, is a file, and is readable.
if ('fromfile.exists())

if

abort ("Fil eCopy: no such source file: " + fromnane);
('fromfile.isFile())
abort ("Fil eCopy: can't copy directory: " + fromnane);

if (!fromfile.canRead())

/1

abort ("Fil eCopy: source file is unreadable: " + from.nane);

If the destination is a directory, use the source file nane

/1 as the destination file name
if (to_file.isDirectory())

11

to_file = new File(to_file, fromfile.getNane());

If the destination exists, nake sure it is a witeable file

/1 and ask before overwiting it. |If the destination doesn't
/1 exist, make sure the directory exists and is witeable.
if (to_file.exists()) {

}

/1

if ('to_file.canWite())
abort ("Fil eCopy: destination file is unwiteable: " + to_nane);
/1 Ask whether to overwite it
Systemout.print("Overwite existing file " + to_name + "? (YIN: ");
System out. flush();
/1 Cet the user's response.
Buf f er edReader i n=new BufferedReader (new | nput St reanReader (Systemin));
String response = in.readLine();
/Il Check the response. |If not a Yes, abort the copy.
if (!'response.equal s("Y") && !response.equal s("y"))
abort ("Fil eCopy: existing file was not overwitten.");

se {
/[l if file doesn't exist, check if directory exists and is witeable.
/1 |f getParent() returns null, then the directory is the current dir.
/1 so look up the user.dir systemproperty to find out what that is.
String parent = to_file.getParent(); // Get the destination directory
if (parent == null) parent = SystemgetProperty(“"user.dir"); // or CAD
File dir = new Fil e(parent); /1 Convert it to a file.
if ('dir.exists())

abort ("Fil eCopy: destination directory doesn't exist: " + parent);
if (dir.isFile())

abort ("Fil eCopy: destination is not a directory: " + parent);
if ('dir.canWite())

abort ("Fil eCopy: destination directory is unwiteable: " + parent);

If we've gotten this far, then everything is okay.

/1 So we copy the file, a buffer of bytes at a tine.

Fi
Fi

lelnputStream from= null; // Streamto read fromsource
leQutput Streamto = null; /]l Streamto wite to destination

try {

from= new FilelnputStrean(fromfile); // Create input stream

to = new FileQutputStreanm(to_file); /1 Create output stream

byte[] buffer = new byte[4096]; /1 A buffer to hold file contents
int bytes_read; /1 How many bytes in buffer

/1 Read a chunk of bytes into the buffer, then wite them out,

/1 looping until we reach the end of the file (when read() returns -1).
/1 Note the conbination of assignnment and conparison in this while

/1 loop. This is a conmon |I/O programing idiom

whil e((bytes_read = fromread(buffer)) != -1) // Read bytes until EOF

48

Java Network Programming

to.wite(buffer, 0, bytes_read); /1 wite bytes

/1 Al'ways cl ose the streans, even if exceptions were thrown
finally {
if (from!=null) try { fromclose(); } catch (I Ckxception e) { ; }
if (to!=null) try { to.close(); } catch (I OException e) { ; }
}
}

/** A conveni ence nethod to throw an exception */
private static void abort(String nsg) throws | OException {
t hrow new | CExcepti on(nsg);
}
}

The following program illustrates the use of the FilelnputSream, FileOutputSream, and
File classes. It writes a string to an output file and then reads the file to verify that the
output was written correctly. The file used for the 1/O is then deleted.

i mport java.lang. System

i nport java.io.FilelnputStream

i mport java.io.FileQutputStream

i mport java.io.File;

i mport java.io.| OException;

public class Filel QApp {

public static void nmain(String args[]) throws | OException {
/1l Create output file test.txt
Fi | eCut put St ream out Stream = new Fil eQut put Strean("test.txt");
String s = "This is a test.";
for(int i=0;i<s.length();++i)

out Streamwite(s.charAt(i));
out Stream cl ose();
/1 Open test.txt for input
Fil el nput StreaminStream = new Fi |l el nput Strean("test.txt");
int inBytes = inStream avail abl e();
Systemout.println("inStream has "+i nBytes+" avail abl e bytes");
byte inBuf[] = new byte[inBytes];
int bytesRead = i nStreamread(inBuf, 0,i nBytes);
System out. printl n(bytesRead+" bytes were read");
Systemout.println("They are: "+new String(inBuf));
inStream cl ose();
File f = new File("test.txt");
f.delete();

The FileOutputSream constructor creates an output stream on the file test.txt. The
file is automatically created in the current working directory. It then writes the string
"Thisisatest." to the output file stream. Note the similarity between this program and the
previous one. The power of streams is that the same methods can be used no matter what
type of stream is being used.

The output stream is closed to make sure that al the data is written to the file. Thefileis
then reopened as an input file by creating an object of class FilelnputSream. The same
methods used in the ByteArraylOApp program are used to determine the number of

49

Java Network Programming

available bytesin the file and read these bytesinto a byte array. The number of bytes read
is displayed along with the characters corresponding to those bytes.

The input stream is closed and then a File object is created to provide access to the file.
The File object is used to delete the file using the del et e() method. The program's
output follows:

i nStream has 15 avail abl e bytes
15 bytes were read
They are: This is a test.

3.5. The Sequencel nputStream, Buffered Stream and Data Stream

3.5.1. The SequencelnputStream

The SequencelnputStream class is used to combine two or more input streams into a
single input stream. The input streams are concatenated, which alows the individua
streams to be treated as a single, logical stream. The Sequencel nputStream class does not
introduce any new access methods. Its power is derived from the two constructors that it
provides. One constructor takes two InputStream objects as arguments. The other takes
an Enumeration of InputStream objects. It provides methods for dealing with a sequence
of related objects.

The following program of Sequencel OApp.java reads the two Java source files,
ByteArrayl OApp.java and Filel OApp.java, a a single file courtesy of the
Sequencel nputStream class.

i mport java.lang. System
i mport java.io.FilelnputStream
i nport java.i 0. Sequencel nput Stream
i mport java.io.| OException;
public class Sequencel QApp {
public static void nmain(String args[]) throws | OException {
Sequencel nput St ream i nSt r eam
FilelnputStreamf1 = new Fil el nput Strean("ByteArrayl OApp.java");
FilelnputStreamf2 = new Fil el nput Strean("Fil el OApp.java");
/1 Concatentate two files into a single input stream
i nStream = new Sequencel nput Strean(f1,f2);
bool ean eof = fal se;
int byteCount = 0;
while (leof) {

int ¢ = inStreamread();
if(c == -1) eof = true;
el se{

Systemout.print((char) c);
++byt eCount ;
}
}

System out. printl n(byteCount+" bytes were read");
inStream cl ose();

f1.close();

f2.close();

50

Java Network Programming

The program creates two objects of class FilelnputSream for the files
Byt eArrayl OApp. java and Fil el OApp.java. The SequencelnputClass constructor is
used to construct a single input stream from the two FilelnputStream objects. The
program then uses a while loop to read al bytes in the combined file and display them to
the console window. The loop stops when the end of the combined file is encountered.
This is signaled when the read() method returns -1. The streams are closed after the
combined files have been read.

The Sequencel OApp program displays the combined contents of the two source files,
followed by aline identifying the number of bytes that were read.

3.5.2. Buffered 1/0O

Buffered input and output is used to temporarily cache datathat is read from or written to
astream. This allows programs to read and write small amounts of data without adversely
affecting system performance. When buffered input is performed, alarge number of bytes
are read at a single time and stored in an input buffer. When a program reads from the
input stream, the input bytes are read from the input buffer. Several reads may be
performed before the buffer needs to be refilled. Input buffering is used to speed up
overall stream input processing.

Output buffering is performed in a similar manner to input buffering. When a program
writes to a stream, the output data is stored in an output buffer until the buffer becomes
full or the output stream is flushed. Only then is the buffered output actually forwarded to
the output stream'’s destination.

Java implements buffered 1/0 as filters. The filters maintain and operate the buffer that
sits between the program and the source or destination of a buffered stream.

The java.io.Bufferedl nput Stream and java.io. Buf f er edQut put St ream classes
buffer reads and writes by first storing the in a buffer (an interna array of bytes). Then
the program reads bytes from the stream without calling the underlying native method
until the buffer is empty. The data is read from or written into the buffer in blocks;
subsequent accesses go straight to the buffer.

The only real difference to the programmer between a regular stream and a buffered
stream are the constructors:

publ i ¢ Bufferedlnput Strean(l nput Streamin)

public BufferedlnputStrean(lnputStreamin, int size)
publ i ¢ BufferedQut put Streanm(Qut put Stream out)

publ i ¢ BufferedQut put Strean(Qut put Stream out, int size)

The si ze argument is the number of bytes in the buffer. If a size isn't specified, a 512
byte buffer is used.

51

Java Network Programming

3.5.3. Data Streams

The java.io. Datal nput Stream and j ava. i 0. Dat aQut put St ream classes read and
write primitive Java data types and Strings in a machine-independent way. Generally you
use a Dat al nput St r eamto read data written by a Dat aCut put St ream This format uses
|EEE 754 for floating point data, big-endian format for integer data, and a modified UTF-
8 for Unicode data.

Dat aQut put St r eamdeclares these methods:

publ i ¢ Dat aCut put St rean{ Qut put St r eam out)
public synchronized void wite(int b) throws | OException
public synchronized void wite(byte[] data, int offset, int |ength)
t hrows | OExcepti on

public final void witeBool ean(bool ean b) throws | OException
public final void witeByte(int b) throws | OException
public final void witeShort(int s) throws | COException
public final void witeChar(int c) throws | OException
public final void witelnt(int i) throws | CException
public final void witeFloat(float f) throws | OException
public final void witeDoubl e(double d) throws | OException
public final void witeBytes(String s) throws | OException
public final void witeChars(String s) throws | OException
public final void witeUTF(String s) throws | OException
public final int size()

public void flush() throws | OException

3.5.2. Examples

The following Buf f er edl QApp. j ava program builds on the Sequencel OApp example
that was previously presented. It performs buffering on the Sequencel nputSream object
used to combine the input from two separate files. It also performs buffering on program
output so that characters do not need to be displayed to the console window a single
character at atime.

i nport java.l ang. System
i nport java.io.Bufferedl nput Stream
i mport java.io.BufferedQutput Stream
i mport java.io.FilelnputStream
i mport java.io. Sequencel nput St ream
i mport java.io.| OException;
public class Bufferedl QApp {
public static void nmain(String args[]) throws | OException {
Sequencel nput Stream f 3;
FilelnputStream f1 = new Fil el nput St rean(" Byt eArrayl QApp. j ava");
FilelnputStreamf2 = new Fil el nput Strean("Fil el OApp.java");
f3 = new Sequencel nput Strean(f1,f2);
/]l Create the buffered input and out put streans
Buf f er edl nput Stream i nSt ream = new Buf f er edl nput Strean{f 3);
Buf f er edQut put St r eam out St ream = new Buf f er edQut put St r eam(Syst em out) ;
i nSt ream ski p(500);
bool ean eof = fal se;
int byteCount = 0;
while (!leof) {

int ¢ = inStreamread();
if(c == -1) eof = true;
el se{

52

Java Network Programming

outStreamwite((char) c);
++byt eCount ;
}

}
String bytesRead = String. val ued (byteCount);

byt esRead+=" bytes were read\n";
out Stream write(bytesRead. get Bytes(), O, bytesRead. | ength());
inStream cl ose();
out Stream cl ose();
f1.close();
f2.close();
}
}

The program begins by creating two objects of FilelnputStream and combining them into
a single input stream using the Sequencel nputStream constructor. It then uses this stream
to create an object of BufferedlnputStream using the default buffer size.

A BufferedOutputSream object is created using the System.out output stream and a
default buffer size. The ski p() method is used to skip over 500 bytes of the input stream.
Thisis done for two reasons. to illustrate the use of the ski p() method and to cut down
on the size of the program output. The rest of the input is read and printed, as in the
previous example.

The program output is similar to that of the preceding example.

The following program of Datal OApp.java shows how DatalnputSream and
DataOutputStream can be used to easily read and write a variety of values using streams.

i mport java.lang. System
i nport java.i o. Datal nput Stream
i mport java.i o.DataQut put Stream
i mport java.io.FilelnputStream
i mport java.io.FileQutputStream
i mport java.io.File;
i mport java.io.|OException;
public class Datal OApp {
public static void main(String args[]) throws | OException {
File file = new File("test.txt");
FileQutputStreamoutFile = new Fil eQutput Strean(file);
Dat aCut put St r eam out St r eam = new Dat aCut put Streanm(out Fi | e);
/1 Wite various data types to the output stream
out Stream wri t eBool ean(true);
out Stream writelnt(123456);
outStreamwriteChar(‘j"');
out Stream wri t eDoubl e(1234. 56) ;
Systemout. println(out Stream si ze()+" bytes were witten");
out Stream cl ose();
outFile.close();
FilelnputStreaminFile = new FilelnputStream(file);
Dat al nput Stream i nStream = new Dat al nput Strean(i nFil e);
Systemout. println(inStream readBool ean());
Systemout.println(inStreamreadlint());
Systemout. println(inStreamreadChar());
Systemout. println(inStream readDoubl e());
inStream cl ose();
inFile.close();
file.delete();

53

Java Network Programming

The program creates an object of class File that is used to accessthet est . t xt file. This
object is used to create an instance of class FileOutputStream that is assigned to the
outFile variable. An abject of class DataOutputStream is then constructed as a filter for
the FileOutputStream object.

The writeBool ean(), witeChar(), witelnt(), and witeDoubl e() methods of
DataOutputStream are used to write examples of primitive data types to the filtered
output stream. The number of bytes written to the output stream is determined by the
si ze() method and displayed to the console window. The output streams are then closed.

The File object, created at the beginning of the program, is then used to create an object
of class FilelnputSream. The output stream is then filtered by creating an object of
Datal nputStream.

The primitive data types that were written to the output file in the beginning of the
program are now read from the filtered input stream and displayed to the console
window.

The program'’s output shows that the data val ues were successfully written and read using
the data I/O filters:

15 bytes were witten
true
123456

J
1234. 56

3.6. Readersand Writers

3.6.1. Basics

Thejava.io. Reader andjava.io. Witer classes are abstract superclasses for classes
that read and write character based data. The subclasses are notable for handling the
conversion between different character sets.

Input and output streams are fundamentally byte based. However readers and writers are
based on characters, which can have varying widths depending on the character set being
used. For example, ASCII and 1SO Latin-1 use one byte characters. Unicode uses two
byte characters. UTF-8 uses characters of varying width between one and three bytes.
Readers and writers know how to handle all these character sets and many more
seamlessly.

The methods of the j ava. i 0. Reader class are deliberately similar to the methods of the
java.io. | nput St ream class. However rather than working with bytes, they work with
chars. All theread() methods block until some input is available, an 1/0 error occurs, or
the end of the stream is reached.

The methods of thej ava.io. Wi ter class are deliberately similar to the methods of the
j ava. i 0. Qut put St reamclass. However rather than working with bytes, they work with

Java Network Programming

chars. Like OutputStreams, Writers may be buffered. To force the write to take place, call
flush().

The j ava.io. I nput St reanReader class serves as a bridge between byte streams and
character streams: It reads bytes from the input stream and trandates them into characters
according to a specified character encoding.

Thejava.io.Filewiter class writes text files using the platform's default character
encoding and the buffer size. If you need to change these values, construct an
Qut put St r eanrReader ON aFi | eCQut put St r eaminstead.

Thejava.io. Buf f eredReader classisasubclass of j ava. i 0. Reader that you chain to
another Reader class to buffer characters. This allows more efficient reading of
characters and lines.

The Buf f er edReader is also notable for itsr eadLi ne() method that allows you to read
text aline a atime.

Each time you read from an unbuffered Reader, there's a matching read from the
underlying input stream. Therefore it's a good idea to wrap a Buf f er edReader around
each Reader whose read() operations are expensive, such as a Fil eReader. For
example,

Buf f eredReader br = new Buf f er edReader (new Fi |l eReader ("37.htm "));

3.6.2. An Example

The following example reads atext file, line by line, and printsit to Syst em out :

/1 Inplenment the Unix cat utility in Java
i nport java.io.*;
class cat {
public static void main (String args[]) {
String thisLine
/1 Loop across the argunents
for (int i=0; i < args.length; i++) {
/1 Qpen the file for reading
try {
Buf f eredReader br = new Buf f eredReader (new Fi | eReader(args[i]));
while ((thisLine = br.readLine()) !'=null) { // while | oop begins here
System out . println(thisLine);
} /] end while
} // end try
catch (1 Oexception e) {
Systemerr.printin("Error: " + e);
}

} // end for
} // end nmain

}

Thejava.io. BufferedWiter classisasubclass of j ava.io. Witer that you chain to
another Wi t er classto buffer characters. This allows more efficient writing of text.

Each time you write to an unbuffered Wi t er, there's a matching write to the underlying
output stream. Therefore it's agood ideato wrap aBuf f eredWiter around each Wi t er

55

Java Network Programming

whose wri t e() operations are expensive and that does not require immediate response,
suchasaFil eWiter. For example,

Buf feredWiter bw = new BufferedWiter(new FileWiter("37.htm"));

3.7. Piped 1/0O and Character Array and String 1/0

3.7.1. Piped 1/0

Piped /O provides the capability for threads to communicate via streams. A thread sends
data to another thread by creating an object of PipedOutputSream that it connects to an
object of PipedinputSream. The output data written by one thread is read by another
thread using the Pipedl nputStream object.

The process of connecting piped input and output threads is symmetric. An object of
class PipedinputThread can aso be connected to an existing object of class
PipedOutputThread.

Java automatically performs synchronization with respect to piped input and output
streams. The thread that reads from an input pipe does not have to worry about any
conflicts with tasks that are being written to the corresponding output stream thread.

Both PipedinputSream and PipedOutputSream override the standard 1/0O methods of
InputStream and OutputStream. The only new method provided by these classes is the
connect () method. Both classes provide the capability to connect a piped stream when it
is constructed by passing the argument of the piped stream to which it is to be connected
as an argument to the constructor.

3.7.2. An Example of Piped 1/0O

The Pi pedl QApp. j ava program creates two threads of execution, named Producer and
Consumer, that communicate using connected objects of classes PipedOutputStream and
PipedinputStream. Producer sends the message "This is a test." to Consumer one
character at a time, and Consumer reads the message in the same manner. Producer
displays its name and any characters that it writes to the console window. Consumer
reads the message and displays its name and the characters it reads to the console
window.

i mport java.lang. Thread;
i nport java.l ang. System
i nport java.l ang. | nterruptedException;

i mport java.l ang. Runnabl e;
i mport java.i o. Pi pedl nput Stream
i nport java.i o. Pi pedQut put St ream
i mport java.io.| OException;
cl ass Pi pedl QApp {
public static void main(String args[]) {
Thread threadl = new Thread(new Pi peCut put (" Producer"));
Thread thread2 = new Thread(new Pi pel nput (" Consuner"));
threadl. start();
thread2. start();

56

Java Network Programming

bool ean threadll sAlive
bool ean thread2l sAlive
do {
if(threadll sAlive & !threadl.isAlive()){
threadll sAlive = fal se;
Systemout.printin("Thread 1 is dead.");

true;
true;

}

if(thread2l sAlive & !thread2.isAlive()){
thread2l sAlive = fal se;
Systemout.println("Thread 2 is dead.");

}
}while(threadllsAlive || thread2lsAlive);

}
class Pipel O {
static Pi pedQut put St ream out put Pi pe = new Pi pedQut put Strean();
static Pipedl nput Stream i nput Pi pe = new Pi pedl nput Strean();
static {
try {
/1 Connect input and output pipes
out put Pi pe. connect (i nput Pi pe);
}catch (I OException ex) {
Systemout.println("l OException in static initializer");
}
}
String nane;
public PipelQ(String id) {
name = id;

}

cl ass Pi peQut put extends Pipel Oinplenents Runnabl e {
public PipeQutput(String id) {

super (i d);

}

public void run() {

String s = "This is a test.";
try {

for(int i=0;i<s.length();++i){
out put Pipe.wite(s.charAt(i));
System out. println(name+" wote "+s.charAt(i));
}
outputPipe.wite(!");
} catch(I Oexception ex) {
Systemout.println("l OException in PipeQutput");
}
}
}
cl ass Pi pelnput extends Pipel O inplenents Runnabl e {
public Pipelnput(String id) {
super (i d);
}
public void run() {
bool ean eof = fal se;
try {
while (!eof) {
int inChar = inputPipe.read();

if(inChar = -1)

char ch = (char) inChar;
if(ch=="1"){

eof =t rue;

br eak;

}el se Systemout.println(name+" read "+ch);

57

Java Network Programming

}
} catch(I Oexception ex) {
Systemout.println("l OException in PipeQutput");
}
}
}

The mai n() method creates the two Producer and Consumer threads as objects of classes
PipeOutput and Pipelnput. These classes are subclasses of PipelO that implement the
Runnable interface. The mai n() method starts both threads and then loops, checking for
their death.

The Pipel O class is the superclass of the PipeOutput and Pipelnput classes. It contains
the dtatic variables, outputPipe and inputPipe, that are used for interthread
communication. These variables are assigned objects of classes PipedOutputStream and
PipelnputSream. The static initializer is used to connect outputPipe with inputPipe using
the connect () method. The PipelO constructor provides the capability to maintain the
name of its instances. This is used by the Pipelnput and PipeOutput classes to store
thread names.

The PipeQutput class extends PipelO and implements the Runnable interface, making it
eligible to be executed as a separate thread. The required run() method performs all
thread processing. It loops to write the test message one character at a time to the
outputPipe. It aso displays its name and the characters that it writes to the console
window. The ! character is used to signa the end of the message transmission. Notice
that 1OException is handled within the thread rather than being identified in the throws
clause of the run() method. In order for run() to properly implement the Runnable
interface, it cannot throw any exceptions.

The Pipelnput class aso extends PipelO and implements the Runnable interface. It
simply loops and reads a character at a time from inputPipe, displaying its name and the
characters that it reads to the console window. It aso handles IOException in order to
avoid having to identify the exception in its throws clause.

The output of PipelOApp shows the time sequencing of the thread input and output
taking place using the connected pipe I/O streams. The output generated by running the
program on your computer will probably differ because of differencesin your computer's
execution speed and 1/0 performance.

3.7.3. Character Array and String 1/0

The CharArrayReader and CharArrayWriter classes ae smilar to the
ByteArrayl nputStream and ByteArrayOutputSream classes in that they support 1/0 from
memory buffers. The difference between these classes is that CharArrayReader and
CharArrayWriter support 16-bit character 1/0, and ByteArraylnputSream and
ByteArrayOutputStream support 8-bit byte array 1/0.

The StringReader class provides the capability to read character input from a string. Like
CharArrayReader, it does not add any additional methods to those provided by Reader.
The SringWriter class is used to write character output to a StringBuffer object. It adds

58

Java Network Programming

the getBuffer() and toString() methods. The getBuffer() method returns the
SringBuffer object corresponding to the output buffer. Thet oSt ri ng() method returns a
Sring copy of the output buffer.

The following Char Arrayl OApp. j ava program is based on the Byt eAr rayl QApp. j ava
program (see Section 3.3.3) introduced earlier. It writes the string "This is a test." one
character at a time to a CharArrayWriter object. It then converts the output buffer to a
CharArrayReader object. Each character of the input buffer is read and appended to a
SringBuffer object. The SringBuffer object is then converted to a Sring object. The
number of characters read and the String object are then displayed.

i mport java.lang. System
i mport java.i o. Char ArrayReader;
i nport java.io.CharArrayWiter;
i mport java.io.| OException;
public class CharArrayl OApp {
public static void nmain(String args[]) throws | OException {
Char ArrayWiter outStream = new CharArrayWiter();
String s = "This is a test.";
for(int i=0;i<s.length();++i)
outStreamwite(s.charAt(i));
Systemout.println("outstream "+outStrean);
Systemout. println("size: "+outStreamsize());
Char ArrayReader inStream
i nStream = new Char Arr ayReader (out Stream toChar Array());

int ch=0;
StringBuffer sb = new StringBuffer("");
while((ch = inStreamread()) != -1)

sb. append((char) ch);
s = sb.toString();
Systemout. println(s.length()+" characters were read");
Systemout.println("They are: "+s);

The program output follows:

outstream This is a test.
size: 15

15 characters were read
They are: This is a test.

The following Stringl OApp.java program is sSimilar to Char Arrayl OApp. j ava
program. It writes output to a StringBuffer instead of a character array. It produces the
same output as Char Ar r ayl OApp. j ava.

i nport java.l ang. System

i mport java.io. StringReader;

import java.io.StringWiter;

i mport java.io.| OException;

public class Stringl OApp {

public static void nmain(String args[]) throws | OException {
StringWiter outStream = new StringWiter();

59

Java Network Programming

String s = "This is a test.";

for(int i=0;i<s.length();++i)
outStreamwrite(s.charAt(i));
Systemout.println("outstream "+outStrean);
Systemout.println("size: "+outStreamtoString().length());
StringReader inStream

inStream = new StringReader (out StreamtoString());

int ch=0;

StringBuffer sb = new StringBuffer("");

while((ch = inStreamread()) != -1)

sb. append((char) ch);

s = sh.toString();

Systemout.printin(s.length()+" characters were read");
Systemout.println("They are: "+s);

60

Java Network Programming

4. Connection-Oriented Communication in Java
4.1. Study Points

* Understand the difference of connection-oriented and connectionless communication.
» Understand the basic concepts of connection-oriented communication using Java.
* Befamiliar with the Socket and ServerSocket classes.

* Beableto write Java program to compl ete ssmple TCP communication tasks.

Reference: (1). [INP]: Chapters 10 and 11. (2). [Java2H] Chapter 10. (3). [Java2U]:
Chapter 30.

4.2. Introduction

4.2.1. Connection-Oriented Versus Connectionless Communication

Transport protocols are used to deliver information from one port to another and thereby
enable communication between application programs. They use either a connection-
oriented or connectionless method of communication. TCP is a connection-oriented
protocol, and UDP is a connectionless transport protocol.

The TCP connection-oriented protocol establishes a communication link between a
source port/IP address and a destination port/IP address. The ports are bound together via
this link until the connection is terminated and the link is broken. An example of a
connection-oriented protocol is a telephone conversation. A telephone connection is
established, communication takes place, and then the connection is terminated.

The rdiability of the communication between the source and destination programs is
ensured through error-detection and error-correction mechanisms that are implemented
within TCP. TCP implements the connection as a stream of bytes from source to
destination. This feature allows the use of the stream /O classes provided by java.io.

The UDP connectionless protocol differs from the TCP connection-oriented protocol in
that it does not establish a link for the duration of the connection. An example of a
connectionless protocol is postal mail. To mail something, you just write down a
destination address (and an optional return address) on the envelope of the item you're
sending and drop it into a mailbox. When using UDP, an application program writes the
destination port and IP address on a datagram and then sends the datagram to its
destination. UDP is less reliable than TCP because there are no delivery-assurance or
error-detecti on-and-correction mechanisms built into the protocol .

Application protocols such as FTP, SMTP, and HTTP use TCP to provide reliable,
stream-based communication between client and server programs. Other protocols, such
as the Time Protocol, use UDP because speed of delivery is more important than end-to-
end reliability.

61

Java Network Programming

4.2.2. The java.net Package

The java.net package provides several classes that support socket-based client/server
communication.

The InetAddress class encapsulates Internet IP addresses and supports conversion
between dotted decimal addresses and host names.

The Socket, ServerSocket, DatagramSocket, and MulticastSocket classes implement
client and server sockets for connection-oriented and connectionless communication. The
DatagramPacket class is used to construct UDP datagram packets. The Socketlmpl and
DatagramSocketlmpl classes and the SocketlmplFactory interface provide hooks for
implementing custom sockets.

The URL, URLConnection, HttpURLConnection, and URLEnNcoder classes implement
high-level browser-server Web connections. The ContentHandler and
URL StreamHandler classes are abstract classes that have provided the basis for the
implementation of Web content and stream handlers. They are supported by the
ContentHandlerFactory and URL StreamHandlerFactory interfaces.

The FileNameMap interface is used to map filenames to MIME types.
The classes in the java.net package can be listed as follows:

The Classes
« Content Handl er
e Dat agranPacket
« Dat agr anSocket
» Dat agrantocket | npl
e Htt pURLConnecti on
* | net Address
e Milticast Socket
e Server Socket

e Socket
e Socket | npl
« URL

« URLConnecti on
« URLEncoder
e URLSt reanHandl er

The Interfaces
e ContentHandl er Factory
 Fi |l eNameMap
e Socket | npl Factory
e URLStreanHandl er Factory

Exceptions
 Bi ndException
e Connect Excepti on
« Ml formedURLEXxcepti on
* NoRout eToHost Excepti on
e Protocol Exception
e« Socket Exception

62

Java Network Programming

 UnknownHost Excepti on
« UnknownServi ceExcepti on

In this session we mainly discuss the Socket and ServerSocket classes.

4.2.3. The Socket Class

The Socket class implements client connection-based sockets. These sockets are used to
develop applications that utilize services provided by connection-oriented server
applications.

The access methods of the Socket class are used to access the 1/0O streams and connection
parameters associated with a connected socket. The getlnetAddress() and getPort()
methods get the |P address of the destination host and the destination host port number to
which the socket is connected. The getLocalPort() method returns the source host local
port number associated with the socket. The getLocal Address() method returns the local
IP address associated with the socket. The getlnputStream() and getOutputStream()
methods are used to access the input and output streams associated with a socket. The
close() method is used to close a socket.

The getSoLinger() and setSoLinger() methods are used to get and set a socket's
SO_LINGER option, which identifies how long a socket is to remain open after a close()
method has been invoked and data remains to be sent over the socket.

The getSoTimeout() and setSoTimeout() methods are used to get and set a socket's
SO _TIMEOUT option, which is used to identify how long a read operation on the socket
IS to be blocked before it times out and the blocking ends.

The getTcpNoDelay() and setTcpNoDelay() methods are used to get and set a socket's
TCP_NODELAY option, which is used to specify whether Nagle's agorithm should be
used to buffer data that is sent over a socket connection. When TCP_NODELAY s true,
Nagle's algorithm is disabled.

The setSocketl mplFactory() class method is used to switch from the default Java socket
implementation to a custom socket implementation. The toString() method returns a
string representation of the socket.

The following PortTalkApp.java program is used to talk to a particular port on a given
host on aline-by-line basis. It provides the options of sending a line to the specified port,
receiving aline from the other host, or terminating the connection.

i mport java.lang. System
i nport java. net. Socket;
i mport java.net.|net Address;
i mport j ava.net. UnknownHost Excepti on;
i nport java.io.*;
public class Port Tal kApp {
public static void main(String args[]){
Port Tal k portTal k = new Port Tal k(args);
port Tal k. di spl ayDesti nati onParaneters();
port Tal k. di spl ayLocal Paraneters();
port Tal k. chat ();
port Tal k. shut down() ;
}
}

63

Java Network Programming

class PortTal k {
Socket connecti on;
Dat aQut put St r eam out St r eam
Buf f eredReader i nStream
public PortTal k(String args[]){
if(args.length!=2) error("Usage: java PortTal kApp host port");
String destination = args[0];

int port = 0;
try {
port = Integer.valueO (args[1]).intValue();

}catch (Nunmber For mat Excepti on ex){
error("lnvalid port nunber");
}

try{
connection = new Socket (destination, port);

}catch (UnknownHost Exception ex){
error (" Unknown host");

}

catch (1 CException ex){
error("lOerror creating socket");

}

try{
i nStream = new Buf f er edReader (

new | nput St r eanReader (connecti on. getl nput Stream()));
out Stream = new Dat aCut put St r eam(connecti on. get Qut put Strean());
}catch (I OException ex){
error("lOerror getting streans");

}

System out. println("Connected to "+destination+" at port "+port+".");

public void displayDestinati onParaneters(){
I net Addr ess dest Address = connecti on. getl net Address();
String name = dest Address. get Host Name() ;
byte i pAddress[] = dest Address. get Address();
int port = connection.getPort();
di spl ayPar anet er s(" Destination ", nane, i pAddr ess, port);

public void displayLocal Paraneters(){
I net Addr ess | ocal Address = nul | ;
try{
| ocal Address = | net Address. get Local Host () ;
}catch (UnknownHost Excepti on ex){
error("Error getting |local host infornmation");
}
String nanme = | ocal Address. get Host Name() ;
byte i pAddress[] = | ocal Address. get Address();
int port = connection.getlLocal Port();
di spl ayPar anet ers("Local ", nane, i pAddress, port);

public void displayParaneters(String s, String nane,
byte i pAddress[],int port){
Systemout.println(s+"host is "+name+".");
Systemout.print(s+"IP address is ");
for(int i=0;i<ipAddress.|ength; ++i)
Systemout. print ((i pAddress[i]+256) %256+".");
Systemout. println();
Systemout.println(s+"port nunber is "+port+".");

}
public void chat(){
Buf f er edReader keyboardl nput = new Buf f er edReader (
new | nput St reanReader (Systemin));
bool ean finished = fal se;
do {

Java Network Programming

try{
System out.print("Send, receive, or quit (SSRQ: ");
System out. flush();
String line = keyboardl nput. readLi ne();
if(line.length()>0){
l'i ne=line.toUpper Case();
switch (line.charAt(0)){
case ' S':
String sendLi ne = keyboardl nput. readLi ne();
out Stream wri t eByt es(sendLi ne);
out Streamwite(13);
out Streamwrite(10);
out Stream fl ush();

br eak;

case R:

int inByte;

Systemout.print("***");

while ((inByte = inStreamread()) !'= "\n")

Systemout.write(inByte);
Systemout. printin();

br eak;
case "Q:

fi ni shed=true;

br eak;
defaul t:

br eak;

}

}
}catch (I OException ex){
error("Error reading fromkeyboard or socket");

}
} while(!finished);
}
public void shutdown(){
try{
connecti on. cl ose();
}catch (I OException ex){
error("lOerror closing socket");

}

public void error(String s){
Systemout.println(s);
Systemexit(1);

}

}

To see how PortTalkApp works, run it using the following command line:

>j ava Port Tal kApp smaug. cm deaki n. edu. au 7
Connected to snmaug. cm deakin. edu. au at port 7.
Destination host is smaug.cm deaki n. edu. au.
Destination | P address is 128.184. 80. 150.
Destination port nunber is 7.

Local host is wanlei.

Local | P address is 139.132.118.113.

Local port nunber is 1548.

Send, receive, or quit (SIRQ:

PortTa kApp connects to my server at port 7. Thisis the port number for the echo server
application. It is used to test Internet communication between hosts. It identifies my
host's name, |P address, and destination port number. In this example, | am connecting

65

Java Network Programming

from my laptop on my loca area network. Its name is wanlei and it has the
139.132.118.113 IP address. When you run the program, your host name and IP address
will be displayed. Thelocal port number that | am connecting from is port 1548.

PortTakApp asks you whether you want to send a line, receive a line, or quit the
program. Whether you elect to send or receive isimportant. If you decide to receive aline
and the host is not sending any data, your program will block while it waits to receive
information from a socket-based stream.

Y ou can also use PortTalkApp to talk to other ports. For example, you can use it to talk to
port 25 of hosts that support the Simple Mail Transport Protocol in order to send email to
someone who is served by that host.

4.2.4. The ServerSocket Class

The ServerSocket class implements a TCP server socket. It provides three constructors
that specify the port to which the server socket is to listen for incoming connection
reguests, an optional maximum connection request queue length, and an optiona Internet
address. The Internet address argument allows multihomed hosts (that is, hosts with more
than one Internet address) to limit connections to a specific interface.

The accept() method is used to cause the server socket to listen and wait until an
incoming connection is established. It returns an object of class Socket once a connection
is made. This Socket object is then used to carry out a service for a single client. The
getlnetAddress() method returns the address of the host to which the socket is connected.
The getLoca Port() method returns the port on which the server socket listens for an
incoming connection. The toString()method returns the socket's address and port number
asastring in preparation for printing.

The getSoTimeout() and setSoTimeout() methods set the socket's SO TIMEOUT
parameter. The close() method closes the server socket.

The static setSocketFactory() method is used to change the default ServerSocket
implementation to a custom implementation. The implAccept() method is used by
subclasses of ServerSocket to override the accept() method.

The following ReverServerApp.java program is a simple server that listens on port 1234
for incoming connections from client programs. When ReverServerApp connects to a
client it reads one line of text at a time from the client, reverses the characters in the text
line, and sends them back to the client.

i mport java.lang. System
i mport java.net. Server Socket;
i mport java. net. Socket ;
i mport java.io.*;
public class Rever Server App {
public static void main(String args[]){
try{
Server Socket server = new Server Socket (1234);
int |localPort = server.getLocal Port();
Systemout.println("Reverse Server is listening on port "+
I ocal Port+".");
Socket client = server.accept();
String destNane = client.getlnet Address(). get Host Name() ;

66

Java Network Programming

int destPort = client.getPort();
System out. println("Accepted connection to "+destName+" on port "+
destPort+".");
Buf f er edReader inStream = new Buff er edReader (
new | nput St r eanReader (cl i ent. getlnputStrean()));
Dat aQut put St r eam out St ream =
new Dat aQut put St rean(cl i ent. get Qut putStrean());
bool ean finished = fal se;
do {
String inLine = inStreamreadLi ne();
System out. println("Received: "+inLine);
i f (inLine.equal sl gnoreCase("quit")) finished=true;
String outLine=new ReverseString(inLine.trin()).getString();
for(int i=0;i<outLine.length();++i)
out Streamwite((byte)outLine.charAt(i));
outStreamwite(13);
outStreamwite(10);
out Stream flush();
Systemout.println("Sent: "+outlLine);
} while(!finished);
inStream cl ose();
out Stream cl ose();
client.close();
server.cl ose();
}catch (I OException ex){
Systemout. println("lI OException occurred.");
}
}

cl ass ReverseString {

String s;

public ReverseString(String in){
int len = in.length();
char out Chars[] = new char[len];
for(int i=0;ic<len;++i)
out Chars[len-1-i]=in.charAt(i);
s = String.val ueX (out Chars);

}
public String getString()({
return s;

}
}

To see how ReverServerApp works, you need to run it in a separate window and then use
PortTalkApp to feed it lines of text. First, run ReverServerApp using the following
command line:

>j ava Rever Server App
Reverse Server is listening on port 1234.

ReverServerApp notifies you that it is up and running. In a separate window, run
PortTa kApp as follows, supplying your host name instead of wanlei.cm.deakin.edu.au:

java Port Tal kApp wanl ei . cm deaki n. edu. au 1234

You can use localhost or 127.0.0.1 as an IP address if you do not have a host name or
cannot determine your I1P address.

67

Java Network Programming

4.3. A Simple Connection-Oriented Communication Example

4.3.1. Essential Components of TCP Communication

Our first example of Java client-server communication shows some basic steps in
establishing a TCP communication connection. The essential components of any
communication are:

* The underlying communication protocol. In this instance, the TCP.
» The application’s communication protocol
* Theclient program.
e The server program.
In a TCP communication, the following steps are needed:
» Create the server socket and listen to client connection request.
» Create the client socket and issue a connection request to the server.

* The server accepts the connection. The communication channel is then
established and communications between the client and the server can be carried
out using the application’s communication protocol.

The application’s protocol isvery smplein this case:
e Theclient sendsa“Hello, Server” string to the server.
» Theserver repliesastring “Y ou have connected to the Very Simple Server."

* Both client and server exit.

4.3.2. Implementing a TCP Client Program

The following steps are carried out when implementing a TCP client program:
» Create asocket for communicating with the server on a specific port.

» Create an InputStream, in our case, a BufferedReader, to receive responses from
the server.

e Create an OutputSream, in our case, a PrintWriter, to send messages to the
server.

* Writeto the OutputStream.

* Read from the InputStream.

» Closethe InputSream, the OutputStream, and the socket before the client exits.
The client program, named C.java, is as follows.
@ npor t j ava.io.*;
i mport java.net.*;

public class C {
public static final int DEFAULT_PORT = 6789;

68

Java Network Programming

public static void usage() {
System out. println("Usage: java C [<port>]");
Systemexit(0);
}
public static void main(String[] args) {
int port = DEFAULT_PORT,;
Socket s = nul|;
/| parse the port specification
if ((args.length = 0) & (args.length !'= 1)) usage();
if (args.length == 0) port = DEFAULT_PORT,;
el se {

try {
port = Integer.parselnt(args[0]);

cat ch(Nurber For mat Exception e) {
usage();

}
try {
Buf f er edReader reader;
PrintWiter witer;
/Il create a socket to conmmunicate to the specified host and port
s = new Socket ("l ocal host", port);
/1 create streans for reading and witing
reader = new BufferedReader (new | nput StreanReader (s. getlnputStrean()));
witer = new PrintWiter(new QutputStreanWiter(s.getQutputStream()))
/1 tell the user that we've connected
Systemout.println("Connected to " + s.getlnetAddress() +
"+ s.getPort());
String line;
// wite a line to the server
witer.println("Hello, Server");
witer.flush();
/1 read the response (a line) fromthe server
line = reader.readLine();
// wite the line to console
Systemout.println("Server says: " + line);
reader. cl ose();
writer.close();

}
catch (1 OException e) {
Systemerr.println(e);

/1 always be sure to close the socket
finally {

try {
if (s !=null) s.close();

}
catch (1 OException e2) { }
}
}
}

The program assumes that the server runs on the “local host” (i.e., with an IP address of
127.0.0.1) and uses a default port number of 6789. The statement

System.out.printIn(" Connected to " + s.getinetAddress() +":" + s.getPort());
displays the server host 1P address and the port number that the client has connected to.

69

Java Network Programming

4.3.3. Implementing a TCP Server Program

When implementing a TCP server, the following steps are carried out:

The

i mpo
i npo
publ
pu
pu

}

st

Create a server socket to listen and accept client connection requests.

Create an InputStream, in our case, a BufferedReader, to read messages from the
client.

Create an OutputStream, in our case, a PrintWriter, to send repliesto the client.

Read from the InputStream.

Write to the OutputStream.

Close the InputSream, the OutputStream, and the socket before the server exits.
server program, named S.java, is asfollows.

rt java.net.*;
rt java.io.*;
ic class S {
blic final static int DEFAULT_PORT = 6789;
blic static void main (String args[]) throws | OException {
Socket client;
if (args.length != 1)
client = accept (DEFAULT_PORT);
el se
client = accept (Integer.parselnt (args[0]));
try {
PrintWiter witer;
Buf f er edReader reader;
reader = new BufferedReader (new
| nput St reanReader (client.getlnputStream()));
witer = new PrintWiter(new
Qut put StreamWiter(client.getQutputStream()));
I/ read a line
String line = reader.readLine();
Systemout.printIn("Cient says: " + line);
/] wite a line
witer.println ("You have connected to the Very Sinple Server.");
witer.flush();
reader. cl ose();
writer.close();
} finally { // closing down the connection
Systemout.println ("d osing");
client.close ();

}

atic Socket accept (int port) throws | OException {
Systemout.println ("Starting on port " + port);

Server Socket server = new Server Socket (port);
Systemout.println ("Witing");

Socket client = server.accept ();

Systemout.println ("Accepted from" + client.getlnetAddress ());
server.close ();

return client;

70

Java Network Programming

The server uses a default port of 6789 for communication. When a connection request is
accepted, the server uses the following statement to display the IP address of the client
computer:

Systemout.println ("Accepted from" + client.getlnetAddress ());

4.4. Variations on the Simple Communication Example

The ssmple communication example is of no practical use at all. A number of issues need
to be addressed in order to improve the simple example into practical use:

» The exchange of multiple messages between the client and the server.
e Theahility to run the server and the client programs on any Internet host.

« Theahility for the server to deal with multiple client connections simultaneously.

4.4.1. Exchange of Multiple Messages

The first issue is to define the application’s communication protocol to allow multiple
exchanges of messages. Here is an example:

e Theserver:

o After the establishing of the connection, the server sends an initial
message to the client.

0 Theserver waitsfor the client’s messages.

0 When the message arrives, the serve responses an “OK” to the clients. The
message is displayed. If the incoming message is “Server Exit”, then the
server exits. Otherwise, return to the waiting step.

e Theclient:

0 After asuccessful connection, the client displays the initial response from
the server.

o Theclient reads aline from the keyboard, and sends it to the server. Then
the client reads the response from the server and displaysiit.

o The input string from the keyboard is checked. The client exits if the
keyboard input string is “Server Exit” or the server is disconnected.
Otherwise, return to the previous step.

The server program, named S1.java, is asfollows:

i mport java.net.*;
i mport java.io.*;
public class S1 {
public final static int DEFAULT_PORT = 6789;
public static void main (String args[]) throws | OException {
Socket client;
if (args.length != 1)
client = accept (DEFAULT_PORT);
el se
client = accept (Integer.parselnt (args[0]));

71

Java Network Programming

try {
PrintWiter witer;
Buf f er edReader reader;
reader = new BufferedReader (new
| nput St r eanReader (client.getlnputStream()));
witer = new PrintWiter(new
Qut put StreamWNiter(client.getQutputStream()));
witer.println ("You are now connected to the Sinple Echo Server.");
writer.flush();
for (53) {
/1 read a line
String line = reader.readLine();
/1 and send back ACK
witer.println("OoK");
witer.flush();
Systemout.println("dient says:
if (line.equal s("Server Exit")) {
br eak;
}

reader. cl ose();
writer.close();
} finally {
Systemout.println ("d osing");
client.close ();

n

+ line);

}

}

static Socket accept (int port) throws | OException {
Systemout.println ("Starting on port " + port);
Server Socket server = new Server Socket (port);
Systemout.println ("Witing");
Socket client = server.accept ();
Systemout.println ("Accepted from" + client.getlnetAddress ());
server.close ();
return client;

The client program, named C1.java, is asfollows:

i mport java.io.*;
i nport java.net.*;
public class Cl1 {
public static final int DEFAULT_PORT = 6789;
public static void usage() {
Systemout. println("Usage: java Cl [<port>]");
System exi t (0);

public static void main(String[] args) {

int port = DEFAULT_PORT,;
Socket s = nul |;
int end = 0;

/1 parse the port specification

if ((args.length !'=0) && (args.length !'= 1)) usage();
if (args.length == 0) port = DEFAULT_PORT;

el se {

try {
port = Integer.parselnt(args[0]);

}
cat ch(Nurber For mat Exception e) {
usage();

}

72

Java Network Programming

}

}

}

try {

PrintWiter witer;
Buf f er edReader reader;
Buf f er edReader kbd;
/] create a socket to conmunicate to the specified host and port
/11 net Address nmyhost = getLocal Host () ;
s = new Socket ("l ocal host", port);
/1 create streanms for reading and witing
reader = new BufferedReader (new | nput StreanReader (s. getlnputStrean()));
Qut put St ream sout = s. get Qut put Stream();
witer = new PrintWiter(new QutputStreanWiter(s.getQutputStrean()));
/1 create a streamfor reading from keyboard
kbd = new BufferedReader (new | nput St r eanReader (Systemin));
/1 tell the user that we've connected
Systemout.println("Connected to " + s.getlnetAddress() +
":" + s.getPort());
String line;
/1 read the first response (a line) fromthe server
line = reader.readLine();
// wite the line to console
Systemout. println(line);
while (true) {
[l print a pronpt
Systemout.print("> ");
System out . flush();
/1l read a line fromconsole, check for EOF
I'ine = kbd. readLine();
if (line.equal s("Server Exit")) end = 1,
/1 send it to the server
witer.println(line);
writer.flush();
/1 read a line fromthe server
Iine = reader.readLine();

/1 check if connection is closed, i.e., EOF

if (line == null) {
Systemout. println("Connection closed by server.");
br eak;

}
if (end == 1) {

br eak;
}
/Il wite the line to console
Systemout. println("Server says: " + line);

reader.close();
writer.close();

}
catch (1 CException e) {

Systemerr.println(e);

}
/1 always be sure to close the socket
finally {
try {
if (s !=null) s.close();

}

}
catch (1 OException e2) { }

73

Java Network Programming

4.4.2. Executing the Programs on Internet Hosts

The first thing to execute the client-server programs on Internet hosts is to know the IP
addresses or/and the host names of the computers. The following program, named
InetExample.java, displays the details of ahost:

i nport java.net.*
i nport java.io.*;
public class |netExanmple {

}

public static void main (String args[]) {
printLocal Address ();
Reader kbd = new Fil eReader (FileDescriptor.in);
Buf f er edReader bufferedkbd = new BufferedReader (kbd);
try {
String naneg;
do {
Systemout.print ("Enter a hostnane or |P address: ");
Systemout. flush ();
name = bufferedKbd. readLine ();

if (name !'= null)
pri nt Renot eAddr ess (nane);
} while (narme !'= null);

Systemout.println ("exit");
} catch (I Oexception ex) {
Systemout.println ("l nput error:");
ex. printStackTrace ();
}
}
static void printLocal Address () {
try {
I net Address nysel f = | net Addr ess. get Local Host ();
Systemout.println ("My nane : " + nysel f.getHost Name ());
Systemout.println ("My IP: " + nysel f.getHostAddress ());
Systemout.println ("My class : " + ipCass (nyself.getAddress ()));
} catch (UnknownHost Exception ex) {
Systemout.println ("Failed to find nyself:");
ex. printStackTrace ();

}

static char ipCass (byte[] ip) {
int highByte = Oxff & ip[O];
return (highByte < 128) ? "A : (highByte < 192) ? 'B

(highByte < 224) ? 'C : (highByte < 240) ? 'D : 'E;

static void printRenoteAddress (String name) {

try {

Systemout.println ("Looking up " + name + "...");
I net Addr ess nachi ne = | net Addr ess. get ByNane (nane);
Systemout.println ("Host name : " + machine. get Host Name ());
Systemout.println ("Host IP : " + machi ne. get Host Address ());
Systemout.println ("Host class : " +

i pCl ass (machi ne. get Address ()));
} catch (UnknownHost Exception ex) {
Systemout.println ("Failed to | ookup " + nane);
}
}

The main() method first calls the PrintLocal Address() methods to display the local host
name and |P address. Then it sitsin aloop that reads host names from the keyboard and

74

Java Network Programming

uses the PrintRemoteAddress() method to display the InetAddress information about the
host.

To alow our client-server program to run on any host, we only need to change the client
program: the server program can be the same. Here is the new client program, named as
C2java

import java.io.*;
i nport java.net.*;
public class C2 {
public static final int DEFAULT_PORT = 6789;
public static void usage() {
Systemout. println("Usage: java C2 <serverhost>");
System exi t (0);

public static void main(String[] args) {
int port = DEFAULT_PORT,;
String address = "";
Socket s = null;
int end = 0;
/1 parse the port specification
if ((args.length !'=0) && (args.length !'= 1)) usage();
if (args.length == 0) {
port = DEFAULT_PORT,;

address = "l ocal host";
} else {
address = args[0];
}
try {

PrintWiter witer;
Buf f er edReader reader;
Buf f er edReader kbd;
/Il create a socket to conmmunicate to the specified host and port
s = new Socket (address, port);
/1 create streans for reading and witing
reader = new Buf f er edReader (new | nput St r eanReader (s. get I nput Strean()));
Qut put St ream sout = s. get Qut put Stream();
witer = new PrintWiter(new QutputStreanWiter(s.getQutputStrean()));
/1 create a streamfor reading from keyboard
kbd = new BufferedReader (new | nput St reanReader (Systemin));
/1 tell the user that we've connected
Systemout.println("Connected to " + s.getlnetAddress() +
"+ s.getPort());
String |ine;
/1 read the first response (a line) fromthe server
line = reader.readLine();
// wite the line to console
Systemout. println(line);
while (true) {
[l print a pronpt
Systemout.print("> ");
System out . flush();
[/l read a line fromconsole, check for EOF
I'ine = kbd. readLine();
if (line.equal s("Server Exit")) end = 1,
/1 send it to the server
witer.println(line);
writer.flush();
/1 read a line fromthe server
Iine = reader.readLine();
/1 check if connection is closed, i.e., EOF
if (line == null) {

75

Java Network Programming

Systemout. println("Connection closed by server.");
break;

}
if (end == 1) {

br eak;
}
// wite the line to console
Systemout. println("Server says: " + line);

}
reader.close();
writer.close();

}
catch (1 Oexception e) {
Systemerr.println(e);

/1 always be sure to close the socket
finally {

try {
if (s !=null) s.close();

}
catch (1 OException e2) { }

}
}
}

In thisversion, we use avariable

String address = ""

To store the IP address entered from the keyboard. The socket is then created using the
following statement:

s = new Socket (address, port);

4.4.3. Supporting Multiple Clients

To support multiple clients, only the server program needs to be changed; the client
program remains the same. When the server isinitialized, we obtain the server socket and
waiting for client connection requests. When a client connection request is accepted, we
use a thread to deal with the accepted incoming client connection. The server then goes
back to wait for new connection requests. Clients can issue two commands in this time,
one is a “Client Exit” command, telling the server that the current client is willing to
disconnect. The other is the “Server Exit” command, in which the the whole program
exits.

i nport java.net.*;
i mport java.io.*;

public class S3 extends Thread {
public final static int DEFAULT_PORT = 6789;
private Socket client = null;

public S3(Socket inSock) {

super ("echoServer");
client = inSock;
}

public void run() {
Socket cSock = client;

76

Java Network Programming

PrintWiter witer;
Buf f er edReader reader;
try {
String |ine;
Systemout.println ("Accepted from" + cSock. getlnet Address());
reader = new BufferedReader (new
| nput St r eanReader (cSock. get I nput Stream()));
witer = new PrintWiter(new
Qut put StreamWiter(cSock. get Qut put Strean()));
witer.println ("You are now connected to the Sinple Echo Server.");
writer.flush();
for (53) {
/1 read a line
line = reader.readLine();
/1 and send back ACK
witer.println("oK");
witer.flush();
Systemout.println("dient says: + line);
if (line.equal s("Server Exit") || line.equals("Cient Exit")) break;
}
Systemout.println ("Cosing the client " + cSock.getlnet Address());
reader.cl ose();
writer.close();
cSock. close ();
if (line.equals("Server Exit")) {
Systemout.println ("C osing the server");
/1 server.close ();
System exit(0);

n

}
} catch (I OException el) {
Systemerr.println("Exception: " + el.getMessage());
Systemexit(1);
}
}

public static void main (String args[]) {

Server Socket server = null;

try {
server = new Server Socket (DEFAULT_PORT) ;
Systemout.println ("Starting on port " + DEFAULT_PORT);

} catch (I OException e) {
Systemerr.println("Exception: couldt make server socket.");
Systemexit(1);

}
while (true) {
Socket inconmi ngSocket = null;
/1 wait fot a connection request
Systemout.println("Waiting...");
try {
i ncom ngSocket = server.accept();
/1 call a thread to deal with a connection
S3 es = new S3(i ncom ngSocket);
es.start();
} catch (I Cexception e) {
Systemerr.println("Exception: could't nmake server socket.");
Systemexit(1);

7

Java Network Programming

5. Developing Clients
5.1. Study Points

Understand basics of client-side networking.
Be able to complete simple client programs using various Internet protocols.
Be able to use the URL class provided by Java.

Understand the principles of the URLConnection class and be able to use its basic
functions.

Understand basics of protocol and content handlers.

References. (1). [INP] Chapters 10, 15, 16, 17. (2). [Java2U]: Chapters 31, 33. (3).
[Java2H]: Chapters 14, 15, 19.

5.2. The Client and its Sockets

5.2.1. Types of Clients

Of the client/server applications that are found on the Internet, only a small group is
typically used. These include email, the Web, FTP, Usenet newsgroups, and Telnet.
Typica Internet client programs include email programs, Web browsers, FTP programs,
news reader programs, and Telnet clients.

Email programs provide an easy-to-use interface by which mail can be created, sent,
retrieved, displayed, and managed. Popular Windows-based clients include Eudora
and Outlook. UNIX systems provide a number of popular email clients including
Pine, ElIm, and mh.

Web browsers provide a window on the World Wide Web and support the display of
Web pages, including Java programs. The Netscape Navigator and Microsoft Internet
Explorer browsers are the most popular browsers on the Web and are Java-capable.
They are supported on UNIX, Windows, Macintosh, and other systems.

FTP programs provide a convenient way to retrieve files from public Internet file
servers and from private file directories. Although a number of user-friendly FTP
client programs are available, the simple text-based FTP client is till the most
popular and most widely supported. WS _FTP is a popular GUI-based FTP client for
Windows platforms.

News reader programs simplify the process of working with messages that are posted
to Usenet newsgroups. A number of netnews client programs are available for
Windows, Macintosh, UNIX, and other operating system platforms.

Telnet clients are used to remotely log in to other systems. These systems are usually
UNIX or other operating systems that are powerful enough to provide the underlying
capabilities needed to implement multiuser support. Windows and Macintosh

78

Java Network Programming

systems, because of their inherent limitations, do not support Telnet server
applications.

Some client programs, such as Netscape Communicator, consist of an integrated suite of
popular programs. For example, Netscape Communicator includes a Web browser, a mail
client, and anews reader, among other clients.

Of course, in specific applications you can create your own clients and servers.

Client programs perform a service for their users by connecting with their server
counterparts, forwarding service requests based on user inputs, and providing the service
results back to the user.

In most cases, the client must initiate the connection. Typicaly, the server listens on a
well-known port for a client connection. The client initiates the connection, which is
accepted by the server. The client sends a service request to the server, based on user
inputs. The server receives the service request, performs the service, and returns the
results of the service to the client. The client receives the service results and displays
them to the user.

5.2.2. The TCP socket for Clients

The TCP socket represents a reliable connection for the transmission of data between two
hosts. It isolates the Java program from the details of packet encodings, lost and
retransmitted packets, and packets that arrive out of order.

There are four fundamental operations a client socket performs. These are:
1. Connect to aremote machine
2. Send data
3. Receivedata
4. Close the connection
A socket may not be connected to more than one host at atime.

The java. net. Socket class alows you to perform all four fundamental socket
operations. You can connect to remote machines; you can send data; you can receive
data; you can close the connection.

Connection is accomplished through the constructors. Each Socket object is associated
with exactly one remote host. To connect to a different host, you must create a new
Socket object.

public Socket(String host, int port)
t hrows UnknownHost Excepti on, | OException
public Socket (I net Address address, int port) throws |OException
public Socket(String host, int port, |netAddress |ocal Address,
int localPort) throws | CException
publi c Socket (I net Address address, int port, |netAddress |ocal Address,
int localPort) throws |CException

79

Java Network Programming

Sending and receiving data is accomplished with output and input streams. There are
methods to get an input stream for a socket and an output stream for the socket.

public I nputStream getlnputStream() throws | COException
publi c Qut put Stream get Qut put Strean() throws | OException

Java places no restrictions on reading and writing to sockets. One thread can read from a
socket while another thread writes to the socket at the same time. (How does this differ
from one thread reading a file while another thread writes to the file?)

5.2.3. Reading from and Writing to a Socket for Echo

The echo protocol simply echoes back anything its sent. The following echo client reads
data from an input stream, then passes it out to an output stream connected to a socket,
connected to a network echo server. A second thread reads the input coming back from
the server. The mai n() method reads some file names from the command line and passes
them into the output stream.

i nport java.net.*;
i mport java.io.*;
i mport java.util.*;

public class Echo {

I net Addr ess server;

int port =7;

I nput Stream t hel nput ;

public static void main(String[] args) {

if (args.length == 0) {

Systemerr.println("Usage: java Echo filel file2...");
Systemexit(1);

}

Vector v = new Vector();

for (int i =0; i <args.length; i++) {
try {

FilelnputStreamfis = new FilelnputStreanm(args[i]);
v. addEl errent (fi s);

}
catch (1 Oexception e) {

}
}
I nput Stream in = new Sequencel nput Strean(v. el enents());
try {
Echo d = new Echo("sneagol . cm Deaki n. edu. au", in);
d.start();

catch (1 Oexception e) {
Systemerr.println(e);
}
}

public Echo() throws UnknownHost Exception {
this (InetAddress. getlLocal Host(), Systemin);
}

public Echo(String nane) throws UnknownHost Exception {
t hi s(I net Addr ess. get ByName(nane), Systemin);
}

80

Java Network Programming

public Echo(String nane, InputStreamis) throws UnknownHost Exception {
thi s(1 net Address. get ByNane(nane), is);
}

public Echo(l net Address server) {
this(server, Systemin);

}

public Echo(l net Address server, InputStreamis) {
this.server = server;

thel nput = is;

}

public void start() {
try {

Socket s = new Socket (server, port);

CopyThread toServer = new CopyThread("toServer",
t hel nput, s.getQutputStrean());

CopyThread fronServer = new CopyThread("fronServer",
s.getlnputStream(), System out);

toServer.start();

fronServer.start();

}

catch (1 OException e) {
Systemerr.println(e);

}

}
}

cl ass CopyThread extends Thread {
I nput Stream i n;
Qut put St ream out ;

public CopyThread(String name, |InputStreamin, QutputStreamout) {
super (nane) ;
this.in =in;
this.out = out;

}

public void run() {
byte[] b = new byte[128];
try {
while (true) {
int n = in.available();
if (n ==0) Thread.yield();
el se Systemerr.println(n);
if (n>Db.length) n = b.length;
int m=in.read(b, 0, n);

if (m==-1) {
Systemout. println(getName() + " done!l");
br eak;
}
out.wite(b, 0, n);
}
}
catch (1 OException e) {

}
}
}

81

Java Network Programming

5.3. Dealingwith HTTP Servers

5.3.1. The Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed,
collaborative, hypermedia information systems and has been in use by the World-Wide
Web global information initiative since 1990. It is designed to support communication
between clients and a hypermedia information server. The commonly used version is
HTTP 1.0, described in RFC 1945, and is the seventh (and last) release of the HTTF/1.0
specification. The most recent version is the HTTP/1.1, first described in RFC 2068. A
recent revision of HTTP/1.1 is described in the document called “RFC 2616: Hypertext
Transfer Protocol - HTTP/1.1”, published June 1999.

HPPT basically defines the internal structure of supported requests and responses. Thus,
from the clients' point of view, the capabilities of the server are completely captured by
the description of message exchanges (requests and responses) the protocol views.

The Uniform Resource Locator (URL) is used in HTTP to identify the data to be
transmitted. It is made up of four parts. protocol, host, path, and file.

» Theprotocol part identifies the service protocol to be used to retrieve the resource.

e The host part must be a complete Internet address or official name of the host
machine on which the data resides. It may also contain a port number on which the
HTTP server listens.

» The path part must specify the complete path through the server’ s directory hierarchy.
* Thefile part must specify the file name containing the required data.

Given a URL, aclient can therefore determine the protocol to use and the target server of
the desired document/resource. The appropriate communication can then be established,
with the client providing the complete pathname of the resource and the server
responding by transmitting back the contents of the resource.

The main characteristics of HTTP are listed below:

* In one connection, a client can request only a certain number of documents from the
server. This maximum number can be specified in the web server as well asthe client.

» The connection can be closed by either party.

« HTTP is a stateless protocol. Every transaction between the client and the server is
assumed to be independent of other transactions.

* Itisamessage-based protocol that follows the object-oriented model.

e The MIME (Multipurpose Internet Mail Extensions) format of data expression allows
client-server systems to be built independently of the data being transferred.

An HTTP regquest has the following format (NL represents a newline):
Method URL_AbsolutePath ProtocolVersion NL [Header][NL Data]

82

Java Network Programming

The Method can be GET, HEADER, and POST. The GET method is the simplest and fastest
one for retrieving information identified by the URL_AbsolutePath. Note that if
URL_AbsolutePath refers to an executable program then the GET method expects the
result of that program from the server.

The HEAD method is identical to the GET method, except that the server only returns the
header information. The actual document is not transferred. This method is useful if the
client wants to test the validity and availability of the information source.

The POST method alows a client to supply supplemental data with the HTTP request to
the server. This data is generally used by the requested document, which is normally an
executable program to work out the details of the accessing that data after it is transferred
to the server. The CGI is one prominent standard supported by most web servers for
making the data available to the executable script or program. The client program can
utilize the POST method to annotate existing resources residing at the server, provide
keywords to search databases, post messages to newsgroups or mailing lists, and even
supply data for remotely adding or updating database records.

An HTTP request can contain optional header fields to supply additional information
about the request or about the client itself.

The data optionally supplied with an HTTP request can be any MIME-conforming
message. The protocol version identifies the HTTP version being used by the server (for
example, HTTP/1.0 or HTTP/1.1).

An HTTP response from the server has the following format:
ProtocolVersion StatusCode Reason NL [Header][NL Data]

The status code in a response is a three-digit integer describing the result of the request.
The reason string is a more detailed description of the returned status code. The first digit
of the status code characterizes the type of status returned as follows:

e Informational (type 1xx)

» Successful (type 2xx)

* Redirection (type 3xx)

* Client error (type 4xx)

* Server error (type 5xx)

For detailed description of the HTTP protocol, refer to the specifications at:
http://www.w3.org/pub/WWW/Protocol s/

5.3.2. Getting Web Pages from a Web Server

The first client-side example using the HTTP protocol is to download a Web page from
an HTTP server then displays the page to the screen. This exampleisillustrated in section
14.4 of the text. Basically, the program asks the user to type in a URL, then uses a socket
to connect to the Web server and try to download the specified web page from the server.
The content of the page is displayed on the screen if the download is successful. After

83

Java Network Programming

that, the program goes back to the loop to get another URL from the keyboard. In order to
discuss some features of the program, we list the program below:

i mport java.net.*;
i nport java.io.*;
public class GrabPage {
public G abPage (String textURL) throws | OException {
di ssect (textURL);
}
protected String host, file;
protected int port;
protected void dissect (String textURL) throws Mal formedURLException {
URL url = new URL (textURL);
host = url.getHost ();
port = url.getPort ();
if (port == -1)
port = 80;
file = url.getFile ();

}
public void grab () throws | CException {
connect ();
try {
fetch ();
} finally {
di sconnect ();
}
}

protected Witer witer;

protect ed BufferedReader reader;

protected void connect () throws | OException {
Socket socket = new Socket (host, port);
Qut put St ream out = socket. get Qut put Stream ();

witer = new QutputStreanWiter (out, "latinl");
Input Streamin = socket.getlnputStream ();

Reader reader = new | nputStreanReader (in, "latinl");
this.reader = new BufferedReader (reader);

}

protected void fetch () throws | CException {
witer.wite ("GET " + file + " HITP/1.0\r\n\n");
witer.flush ();
Print Witer console = new PrintWiter (Systemout);
String input;
while ((input = reader.readLine ()) != null)

console.println (input);

console.flush ();

protected void disconnect () throws | OException {
reader.close ();
}
public static void main (String[] args) throws | OException {
Reader kbd = new Fil eReader (FileDescriptor.in);
Buf f er edReader bufferedkbd = new BufferedReader (kbd);
while (true) {
String textURL;
Systemout.print ("Enter a URL: ");
Systemout.flush ();
if ((textURL = bufferedKbd.readLine ()) == null)
br eak;
try {
GrabPage grabPage = new G abPage (textURL);
grabPage. grab ();
} catch (I Oexception ex) {

Java Network Programming

ex. printStackTrace ();
conti nue;

}
Systemout.printin ("- OK-");

}

Systemout.println ("exit");

}
}

A few notes about the program. First, the program uses the URL class (to be discussed
later in this session) to dissect the URL string typed in by the user into various parts.
Then the program connects to the HTTP server, fetches the web page according to the
given URL using the “GET” command of the HTTP protocol, and disconnect from the
server. The display of the content of the web page is done in the fetch() method of the
program, i.e.,, when a line is read from the server, it is displayed immediately on the
screen.

The second example in the text is a class that performs an HTTP POST operation.
Students are required to understand the example and use it in a client program to access
the web server.

5.4. Dealing with Servers of other Internet Protocols

There have been many Internet protocols used in today’ s Internet applications. Table 15.1
lists some commonly used ones and the RFC document numbers that specify these
protocols.

Protocol | Name RFC

IP Internet Protocol 791
UDP User Datagram Protocol 768
TCP Transmission Control Protocol 793
TELNET | Telnet Protocol 854, 855
FTP File Transfer Protocol 959
SMTP Simple Mail Transfer Protocol 821
DOMAIN | Domain Name System 1034, 1035
ECHO Echo Protocol 862
TIME Time Server Protocol 868
TFTP Trivia File Transfer Protocol 1350
PPP Point-to-Point Protocol 1661
FINGER | Finger User Information Protocol | 1288

Table 15.1. Some Internet protocol specification documents

85

Java Network Programming

5.4.1. A Finger Client

The finger protocol is specified in RFC 1288. When using a finger server, the client
should make a TCP connection to port 79 of the remote machine and transfer a finger
query in 8-bit ASCII; the host will respond with an ASCII result, detailing the user(s)
logged on the machine. The following finger program Finger.java asks the user to input a
host to which to connect and an optional username. The returned information about the

logged on users will then be displayed if the connection is successful.

i mport java.io.*;
i nport java.net.*;
i mport java.util.*;

public class Finger {
public static final int DEFAULT_PORT = 79;

prot ect ed bool ean verbose;
protected int port;
protected String host, query;

public Finger (String request,

}

public Finger (String query, String host, int port, bool ean verbose) throws

this.verbose = verbose;
int at = request.lastlndexOr (' @);
if (at == -1) {

query = request;

host = | net Address. get Local Host (). get Host Narme ();
port = DEFAULT_PORT,
} else {
query = request.substring (0, at);
int colon = request.indexOh (':', at + 1);
if (colon == -1) {

host = request.substring (at + 1);
port = DEFAULT_PORT,;
} else {
host = request.substring (at + 1, colon);

bool ean verbose) throws | OException {

port = Integer.parselnt (request.substring (colon + 1));

}
if (host.equals (""))
host = I net Address. get Local Host (). getHost Nane ();
}

| CException {

}

this.query = query;
this.host = host.equals ("") ?

I net Addr ess. get Local Host ().getHostName () : host;
this.port = (port == -1) ? DEFAULT_PORT : port;
this.verbose = verbose;

public Reader finger () throws | CException {

Socket socket = new Socket (host, port);
Qut put St ream out = socket. get Qut put Stream ();
QutputStreamWiter witer = new Qut putStreanWiter (out,
if (verbose)

witer.wite ("/W);
if (verbose && (query.length () > 0))

witer.wite (" ");
witer.wite (query);

86

"latinl");

Java Network Programming

witer.wite ("\r\n");
witer.flush ();

return new | nput StreanmReader (socket.getlnputStream (), "latinl");
}
public static void display (Reader reader, Witer witer) throws | CException
{
PrintWiter printWiter = new PrintWiter (witer);
Buf f er edReader bufferedReader = new Buf f eredReader (reader);
String |ine;
while ((line = bufferedReader.readLine ()) != null)
printWiter.println (line);
reader.close ();
}
public static void main (String[] args) throws | OException {
if (((args.length == 2) && 'args[0].equals ("-1")) || (args.length > 2))
throw new ||| egal Argunent Excepti on
("Syntax: Finger [-I] [<usernane>][{@hostname>}[:<port>]]");
bool ean verbose = (args.length > 0) &% args[0].equals ("-1");
String query = (args.length > (verbose ? 1 : 0)) ?
argsf[args.length - 1] : "";
Fi nger finger = new Finger (query, verbose);
Reader result = finger.finger ();
Witer console = new FileWiter (FileDescriptor.out);
display (result, console);
consol e.flush ();
}
}

The command syntax is:

Java Finger [-1] [<usernane>][@ <host nane>{ @host nane>}][: <port>]]

The “-I” flag indicates that a verbose query should be made. If no port number is
specified, the default port number of 79 is used. For example, the command:

>j ava Fi nger wanl ei @maug. cm deaki n. edu. au

returns the following information:

Login Narre TTY Idle When Wher e
wanl ei Wanl ei Zhou pts/ 34 10 Thu 13:31 sneagol.cm deakin. ed

while the command:

>j ava Fi nger -l wanl ei @maug. cm deaki n. edu. au

returns the following information:

Logi n nane: wanl ei In real life: Wanlei Zhou
Directory: /home/wanl ei Shel | : /bin/csh

On since Cct 18 13:31:52 on pts/34 from sneagol . cm deaki n. edu. au
10 minutes ldle Tine

87

Java Network Programming

No unread nil
No Pl an.

Note that some hosts may not have a finger server running on them or the firewall may
forbid the finger connection from outside of the intranet.

5.4.2. A DNS Client

A more complex client program is the use of the DNS (domain naming system) server
described in section 15.3 of the [HSH] book. The DNS is a globally distributed database
storing the mapping between the Internet address and the host name of Internet hosts. It
also stores other information such as the I P class of the host and so on. The description of
the DNS protocol is specified in RFC 1035. Most organizations have their own DNS
server(s) that list(s) the mapping between the hosts and their IP address within the
organization. For example, the DNS server of School of Computing and Mathematics is
named as akma.cm.deakin.edu.au, with an 1P address of 128.184.80.2.

The DNS client developed in section 15.3 of the [HSH] book allows you to query a name
server for information about a given host name or domain name. Since the DNS protocol
is more complex than the finger protocol, a number of helper classes are developed in the
text to compl ete the task. The implementation consists of the following programs:

DNS,java: This class contains various constants that are used by the DNS-related classes.

DNSQuery.java: This class represents a DNS query. It includes details of the host name
being queried and the type of query, and provides methods to alow this query to be
transmitted and a response to be received.

DNSRR.java: This class represents a DNS resource record, which is the encapsulation of
apiece of DNS information.

DNSInputStream.java: This class is an InputStream that provides helper methods to
decode the typical datathat are returned in aDNS response.

NSLookup.java: This is a command-line nslookup client that uses these DNS classes to
perform DNS resolution.

Students are encouraged to understand the working of the program and try to test its
execution.
5.5 The URL Class

5.5.1. The Basics of the URL Class

A URL, short for "Uniform Resource Locator", is a way to unambiguously identify the
location of aresource on the Internet. The smplest way for a Java program to locate and
retrieve data from the network is to use the URL class provided by Java in the
java.net.URL. Thisclassis an abstraction of a URL like http://www.cm.deakin.edu.au/.

The j ava. net . URL class represents a URL. There are constructors to create new URLS
and methods to parse the different parts of a URL. However the heart of the class are the

88

Java Network Programming

methods that allow you to get an InputStream from a URL so you can read data from a
server.

The URL classis closely tied to protocol and content handlers. The objective isto separate
the data being downloaded from the the protocol used to download it. The protocol
handler is responsible for communicating with the server, that is moving bytes from the
server to the client. It handles any necessary negotiation with the server and any headers.
Itsjob is to return only the actua bytes of the data or file requested. The content handler
takes those bytes and trandates them into some kind of Java object such as an
| nput St r eamoOr | magePr oducer .

When you construct a URL object, Javalooks for a protocol handler that understands the
protocol part of the URL such as "http" or "mailto”. If no such handler isfound, the
constructor throws a Mal f or medURLExcept i on. The protocols include ftp, http, file,
gopher, mailto, etc.

You can create URL instances using its constructors. The simplest one is the constructor
that takes an absolute URL in string form as its single argument:

public URL(String url) throws MalformedURLEXxception

The following example (named Prot ocol Tester. java) USes this constructor to create a
number of URL instances to determine which protocol a virtual machine does and does
not support. It attempts to construct a URL object for each of the 14 protocols (8 standard
ones, 3 custom protocols for various Java APIs, and 4 undocumented protocols used
internaly by HotJava). If the constructor succeeds, you know that the protocol is
supported. Otherwise, a MalformedURLEXxception is thrown, and you know that the
protocol is not supported.

/* Which protocols does a virtual machi ne support? */
i mport java.net.*;
public class Protocol Tester {
public static void main(String[] args) {
/1 hypertext transfer protocol
test Protocol ("http://ww. adc. org");
/1 secure http
test Protocol ("https://ww. amazon. com exec/ obi dos/ order2/");
/1 file transfer protocol
test Protocol ("ftp://netal ab. unc. edu/ pub/ | anguages/j avalj avafaqg/");
/1 Sinple Mail Transfer Protocol
test Protocol ("nmail to: el haro@ret al ab. unc. edu");
/1 tel net
testProtocol ("tel net://dibner.poly.edu/");
/1 local file access
testProtocol ("file:///etc/passwd");
/1 gopher
t est Prot ocol (" gopher://gopher.anc.org. zal/");
/1 Lightweight Directory Access Protocol
t est Prot ocol (
"l dap://1dap.itd.um ch. edu/ o=Uni ver si t y%200of %20M chi gan, c=US?post al Addr ess");
/1 Jdar
t est Prot ocol (
"jar:http://metal ab. unc. edu/j ava/ books/j avai o/ i oexanpl es/j avai o. j ar!/com macf aq
/i o/ St reanCopi er.cl ass");
/1 NFS, Network File System
test Protocol ("nfs://utopia.poly.edu/usr/tmp/");

89

Java Network Programming

/1 a custom protocol for JDBC
test Protocol ("jdbc: mysql ://1 una. netal ab. unc. edu: 3306/ NEWS") ;
/1 rm, a custom protocol for renpte nethod invocation
testProtocol ("rm ://netal ab. unc. edu/ Render Engi ne") ;
/1 custom protocols for HotJava
test Protocol ("doc:/ UsersCui de/rel ease. htm ") ;
t est Protocol ("netdoc:/ UsersCui de/rel ease. htm ") ;
t est Prot ocol ("systenresource://ww. adc. org/ +/i ndex. ht m ") ;
test Protocol ("verbatimhttp://ww. adc.org/");
}
private static void testProtocol (String url) {
try {
URL u = new URL(url);
Systemout. println(u.getProtocol () + " is supported");

}
catch (Ml f ormedURLException e) {
String protocol = url.substring(0, url.indexOf(':"));
Systemout.println(protocol + " is not supported");
}
}
}

The results of this program depend on which virtual machine runs it. Students are
required to understand this program and test run it on their own machines.

5.5.2. Constructing a URL from its Component Parts

The second constructor builds a URL from three strings specifying the protocol, the
hostname, and thefile:

public URL(String protocol, Sring hostname, Sring file) throws MalformedURLException

This constructor sets the port to —1 if default port for the protocol is used. Otherwise, a
parameter “int port” is used after the hostname to specify the port explicitly.

The following example (named Pr ot ocol Test er Appl et . j ava) S an applet that uses the
above constructor to test the protocols supported by a browser’ s virtual machine.

i mport java.net.*;
i nport java.applet.*;
i nport java.aw.*;
public class Protocol TesterAppl et extends Applet {
Text Area results = new Text Area();
public void init() {
t hi s. set Layout (new Bor der Layout ());
this.add("Center", results);

public void start() {

String host = "www. peacefire.org";
String file = "/bypass/ SurfWatch/";
String[] schenes = {"http", "https", "ftp", "mailto",
"telnet", "file", "l dap", "gopher",
"j dbc", "rm ", "jndi", "jar",
"doc", "netdoc", "nfs", "verbatint,
"finger", "daytinme", "systenresource"};
for (int i =0; i < schenes.length; i++) {
try {
URL u = new URL(schenmes[i], host, file);
resul ts. append(schenes[i] + " is supported\r\n");
}

90

Java Network Programming

catch (Ml formedURLException e) {
resul ts. append(schenes[i] + " is not supported\r\n");
}
}

You aso need the following HTML file (named pr ot ocol Tester. htm) to test the above
program:

<HTM.>

<title>Which schemes does this browser support?</title>
<body bgcol or=#ffffff text=#000000>

<H1>Whi ch schenes does this browser support?</Hl>
<APPLET wi dt h=400 hei ght =300 code=Pr ot ocol Test er Appl et >
</ APPLET>

</ BCDY>

</ HTML>

5.5.3. Other URL Constructors and Methods

The third URL constructor creates a URL object using arelative URL and abase URL.:
public URL(URL base, Sring relative) throws MalformedURLException

For example, the following code segment creates a new URL u2 from the base URL of
ul by removing the filename of ul and appending the new filename specified in the
constructor:

try {
URL ul = new URL(“http://ww3.cm deaki n. edu. au/ ~wanl ei / #hnt each”) ;
URL u2 = new URL(ul, “apweb99. htnt

}
catch (Ml formedURLException e) {
Systemerr.println(e);

}

The following program, named as RelativeURL Testt.java, uses the getDocumentBase()
(or getCodeBase()) method of the java.applet.Applet class to get the document base (or
code base) relative to the applet, and then uses the above constructor to create anew URL
relative to the document base.

i nport java.net.*;
i nport java.applet.*;
i mport java.aw.*;
public class RelativeURLTest extends Applet {
public void init () {
try {
URL base = this.getDocunent Base();
URL relative = new URL(base, "mailinglists.htm");
this. set Layout (new GridLayout (2,1));
thi s. add(new Label (base.toString()));
this.add(new Label (relative.toString()));

}
catch (Ml f ormedURLException e) {

this. add(new Label ("This shoul dn't happen!"));
}

91

Java Network Programming

}
}

The following HTML file (named relativeURL.html) is used to run the applet:

<HTM.>

<title>Relative URL Test</title>

<body bgcol or=#ffffff text=#000000>

<APPLET wi dt h=250 hei ght =100 code=Rel ati veURLTest >
</ APPLET>

</ BCDY>

</ HTM_>

Java 2 adds two additional constructors that allow you to specify the protocol handler for
the URL.

URLSs can be split into five parts:

» The scheme, as known as protocol

e Theauthority

e Thepath

* Theref, dso known as the section or named anchor
* Thequery string

Five public methods are provided for the read-only access to these parts: getFile(),
getHost(), getPort(), getProtocol(), and getRef(). Java 1.3 adds four more methods:
getQuery(), getPath() getUserinfo(), and getAuthority(). The text book has a thorough
description of most of them. Hereis an example:

try {
URL u = new URL("http://ww.deakin. edu. au/ ~wanl ei /i ndex. ht Ml #hre");
Systemout. println("The protocol is " + u.getProtocol());

Systemout.println("The host is " + u.getHost());
Systemout.println("The port is " + u.getPort());
Systemout.printin("The fileis " + u.getFile());
Systemout.println("The anchor is " + u.getRef());

}
catch (Ml f ormredURLException e) {
}

If a port is not explicitly specified in the URL, it's set to -1. This does not mean that the
connection is attempted on port -1 (which doesn't exist) but rather that the default port is
to be used.

If the ref doesn't exist, it's just nul I, SO watch out for Nul | Poi nt er Except i onS. Better
yet, test to see that it's non-null before using it.

Finaly if thefileisleft off completely, e.g. http://java.sun.com, then it's set to "/".

5.5.4. Retrieve Data from a URL
The URL class has three (four in Java 1.3) methods to retrieve datafrom a URL:

92

Java Network Programming

public final InputStream openStream() throws IOException

public final Object getContent() throws | OException

public final URLConnection openConnection() throws |OException

public final Object getContent(Clasy[] classes) throws |OException // Java 1.3 only

We give examples for the first two methods in this section. The URLConnection class will
be discussed in the next section. The method for Java 1.3 is not discussed in this unit. The
following program, named as SourceViewer.java, USeS the openSrream() method to
download data from a URL reference. It reads a URL from the command line, opens an
InputSream from the URL, chains the resulting InputSream to an InputStreamReader
using the default encoding, and then uses InputSreamReader’s read() method to read
successive characters from the file, each of which is printed on the screen.

i mport java.net.*;
i mport java.io.*;
public class SourceVi ewer {
public static void main (String args[]) {
if (args.length > 0) {
try {
// Open the URL for reading
URL u = new URL(args[0]);
I nput Stream in = u.openStrean();
/1 buffer the input to increase perfornance
in = new Bufferedl nput Strean(in);
/1 chain the InputStreamto a Reader
Reader r = new | nput StreanReader (in);
int c;
while ((c =r.read()) '=-1) {
Systemout.print((char) c);

}

}
catch (Ml formedURLException e) {
Systemerr.println(args[0] + " is not a parseable URL");

}
catch (1 Oexception e) {
Systemerr.println(e);

}
} /1 end if

} // end main
} // end SourceVi ener

The following program uses the getContent() method to download data referenced by a
URL. This method retrieves the data referenced by a URL and tries to make it into some
type of object. If the data is a text object, such as an ASCII or HTML file, the object
returned is usually some sort of InputSream. If the datais an image, such as a GIF or a
JPEG file, then the method usually returns a java.awt.ImageProducer. This method
works by looking at the Content-type field in the MIME header of data it gets from the
server. The programis listed below:

i mport java.net.*;
i nport java.io.*;
public class ContentGetter {
public static void main (String[] args) {
if (args.length > 0) {
/1 Open the URL for reading
try {

93

Java Network Programming

URL u = new URL(args[0]);
try {
hject o = u.getContent();
Systemout.println("l got a " + o.getd ass().getNane());
Y}/l end try
catch (1 CeException e) {
Systemerr.printin(e);

}
} /] end try
catch (Ml formedURLException e) {
Systemerr.println(args[0] + " is not a parseable URL");
}
Y/l endif

} // end main
} // end ContentGCetter

Students are required to run the program by supplying different types of URL at the
command line and verify the types returned by the program.

5.6. The URL Connection Class

5.6.1. Basic Principles

The URLConnection is an abstract class that represents an active connection to a resource
specified by a URL. It has two purposes. The first is to provide more control over the
interaction with a server than the URL class. Using a URLConnection class, you can
inspect the MIME headers sent by an HTTP server and respond accordingly. You can
adjust the MIME header fields used by the client request. Y ou can use a URLConnection
to download binary files. Finally, you can use a URLConnection to send data back to a
web server with POST or PUT and other HTTP request methods. The second function of a
URLConnection class is to be a part of Java's protocol handler mechanism, which aso
includes the URLSreamHandler class. This section discusses the first function.

A program that uses the URLConnection class directly has the following steps, athough
the program does not have to perform all the steps.

» Construct aURL object.

* Invoke the URL object’s openConnection() method to retrieve a URLConnection
object for that URL.

e Configure the URLConnection

* Reader the header fields.

» Get aninput stream and read data.

» Get an output stream and write data.

¢ Closethe connection.

5.6.2. A Simple URLConnection Example

The following program reads data from a server. It only uses four steps:

94

Java Network Programming

» Construct aURL object.

* Invoke the URL object’s openConnection() method to retrieve a URLConnection
object for that URL.

* Invoke the URLConnection’s getlnputStream() method..
* Read from the input stream using the usual stream API.

i mport java.net.*;
i nport java.io.*;
public class SourceViewer?2 {
public static void main (String[] args) {
if (args.length > 0) {

try {
/1 Open the URLConnection for reading

URL u = new URL(args[0]);

URLConnection uc = u.openConnection();

I nput Stream raw = uc. getl nput Stream();

I nput St ream buf fer = new Buf f eredl nput Strean{raw);

/1 chain the InputStreamto a Reader

Reader r = new | nput St r eanReader (buffer);

int c;

while ((c =r.read()) !=-1) {
Systemout.print((char) c);

}

}
catch (Ml formedURLException e) {
Systemerr.println(args[0] + " is not a parseable URL");

}
catch (1 Oexception e) {
Systemerr.println(e);

}
Y/l endif

} // end main
} // end SourceVi ewer?2

This program is amost the same as the one that uses the URL class. Actudly the
difference between URL and URLConnection classes are not apparent with just ssmple
input streams as in the example. The biggest different between the two classes are:

e URLConnection provides access to the MIME header associated with an HTTP 1.0
response.

» URLConnection class lets you configure the request parameters.

» URLConnection class lets you write data to the server as well as read data from the
server.

5.6.3. Dealing with the MIME Header

The following program downloads a binary file from the server and saves it on the loca
disk. It creates a URLConnection object and test the type of the file. The file is
downloaded only if it is a binary file (ContentType is text). If the ContentType is missing
or the ContentLength==-1, the program throws an |OException.

i nport java.net.*;
i nport java.io.*;

95

Java Network Programming

public class BinarySaver {
public static void main (String args[]) {
for (int i =0; i < args.length; i++) {
try {
URL root = new URL(args[i]);
saveBi naryFil e(root);

}
catch (Ml fornedURLException e) {
Systemerr.println(args[i] + " is not URL | understand.");

}
catch (1 OException e) {
Systemerr.println(e);

}
} /1 end for
} // end main
public static void saveBinaryFile(URL u) throws | OException {
URLConnection uc = u.openConnection();
String content Type = uc. get Cont ent Type();
int contentlLength = uc.getContentLength();
if (contentType.startsWth("text/") || contentLength == -1) {
throw new | CException("This is not a binary file.");

I nput Stream raw = uc. getl nput Strean();
InputStreamin = new Bufferedl nputStrean(raw);
byte[] data = new byte[1024];
int bytesRead = 0;
int offset = 0;
while (offset < contentlLength) {
bytesRead = in.read(data, offset, data.length-offset);
if (bytesRead == -1) break;
of fset += bytesRead;
}
in.close();
if (offset !'= contentLength) {
throw new | OException("Only read " + of fset
+ " bytes; Expected " + contentlLength + " bytes");
}

String filenanme = u.getFile();

filename = filenane.substring(filenane.lastlndexOr('/") + 1);
Fil eQut put Stream fout = new Fil eQut put Strean(fil enane);
fout.wite(data);

fout.flush();

fout.close();

} // end BinarySaver

A number of methods of the URLConnection class can be used to read the properties of
the MIME header. Following is an example to print the content type, content length,
content encoding, date of last modification, expiration date, and current date:

i mport java.net.*;
i nport java.io.*;
i mport java.util.*;
public class M MEHeader sVi ewer {
public static void main(String args[]) {
for (int i=0; i < args.length; i++) {
try {
URL u = new URL(args[i]);
URLConnection uc = u.openConnection();
Systemout. println("Content-type: " + uc.getContentType());
System out. printl n(" Content -encodi ng:

96

Java Network Programming

+ uc. get Cont ent Encodi ng());
Systemout.println("Date: " + new Date(uc.getDate()));
Systemout. println("Last nodified: "
+ new Dat e(uc. get Last Modi fied()));
Systemout. println("Expiration date:
+ new Dat e(uc.getExpiration()));
Systemout.println("Content-length: " + uc.getContentlLength());
} /] end try
catch (Ml formedURLException e) {
Systemerr.println(args[i] + " is not a URL | understand");

}

catch (1 OException e) {
Systemerr.println(e);

}

Systemout. printin();
} I/ end for
} // end main
} // end M MEHeader sVi ewer

Students are required to run this program and view examine the returned parameters of
variousfiles.

A number of methods are also provided by the URLConnection class to retrieve arbitary
MIME header fields. The following is an example that displays al header fields of a
URL:

i mport java.net.*;
i nport java.io.*;
public class A | M MEHeaders {
public static void main(String args[]) {
for (int i=0; i < args.length; i++) {
try {
URL u = new URL(args[i]);
URLConnection uc = u.openConnection();

for (int j =0; ; j++) {
String header = uc.getHeaderField(j);
i f (header == null) break;
Systemout. println(uc. get Header Fi el dKey(j) + ": " + header);

} I/ end for
} I/ end try
catch (Ml fornedURLException e) {
Systemerr.println(args[i] + " is not a URL | understand.");

}

catch (1 CException e) {
Systemerr.println(e);

}

Systemout. printlin();
} // end for

} // end main

} // end Al M MEHeaders

5.6.4. The URLConnection Configuration

The URLConnection class has seven protected instance fields that define exactly how the
client will make the request to the server. They are:

protected URL url;

prot ect ed bool ean dol nput = true;
protected bool ean doCQutput = fal se;

97

Java Network Programming

protected bool ean all owUserlnteracti on = default All owlser|nteraction;
protected bool ean useCaches = def aul t UseCashes;

protected | ong i f Modi fiedSince = 0;

prot ect ed bool ean connected = fal se;

These fields are accessed and modified by using the obvious named setter and getter
methods:

public URL get URL();

public void set Dol nput (bool ean dol nput);

public bool ean get Dol nput () ;

public void set DoCut put (bool ean doQut put) ;

public bool ean get DoQut put () ;

public void set Al | owUser | nteracti on(bool ean al | owdser | nteraction);
public bool ean get Al | owUser | nteraction();

public void set UseCaches(bool ean useCaches);

public bool ean get UseCaches();

public void set | f Mbdi fi edSi nce(l ong ifMdifiedSince);

public bool ean get Dol nput () ;
Y ou can modify these fields only before the URLConnection is connected.
5.7. Handlersfor Contentsand Protocols

5.7.1. What are Content and Protocol Handlers

Java provides two mechanisms to make Web-based clients (such as browsers) extensible:
handling protocols and handling contents. Handling a protocol means taking care of the
interaction between a client and a server; generating requests in the correct format,
interpreting the headers that come back with the data, acknowledging that the data has
been received, etc. Handling the content means converting the raw datainto aformat Java
understands.

Content handlers are implemented as subclasses of the ContentHandler class. A content
handler is only required to implement a single method, the getContent()method, which
overrides the method provided by the ContentHandler class. This method takes an
URL Connection object as a parameter and returns an object of a specific MIME type.

The purpose of a content handler is to extract an object of a given MIME type from an
URLConnection object's input stream. Content handlers are not directly instantiated or
accessed. The getContent() methods of the URL and URLConnection classes cause
content handlers to be created and invoked to perform their processing.

A content handler is associated with a specific MIME type through the use of the
ContentHandlerFactory interface. A class that implements the ContentHandlerFactory
interface must implement the createContentHandler() method. This method returns a
ContentHandler object to be used for a specific MIME type. A ContentHandlerFactory
object is instaled using the static setContentHandlerFactory() method of the
URL Connection class.

Protocol handlers are implemented as subclasses of the URLStreamHandler class. The
URL StreamHandler class defines four access methods that can be overridden by its
subclasses, but only the openConnection() method is required to be overridden.

98

Java Network Programming

The openConnection() method takes an URL with its assigned protocol as a parameter
and returns an object of class URLConnection. The URLConnection object can then be
used to create input and output streams and to access the resource addressed by the URL.

The parseURL() and setURL() methods are used to implement custom URL syntax
parsing. The toExternalForm() method is used to convert an URL of the protocol type to
a String object.

The purpose of a protocol handler is to implement a custom protocol needed to access
Web objects identified by URLSs that require the custom protocol. Protocol handlers, like
content handlers, are not directly instantiated or accessed. The methods of the
URLConnection object that is returned by a protocol handler are invoked to access the
resource referenced by the protocol.

A protocol is identified beginning with the first character of the URL and continuing to
the first colon (:) contained in the URL. For example, the protocol of the URL
http://www.jaworski.com is http, and the protocol of the URL fortune:// jaworski.com is
fortune.

A protocol handler is associated with a specific protocol through the use of the
URL StreamHandlerFactory interface. A class that implements the
URL StreamHandlerFactory interface must implement the createURL StreamHandler()
method. This method returns an URLStreamHandler object to be used for a specific
protocol. An URLStreamHandlerFactory object is instaled using the static
setURL StreamHandl erFactory() method of the URL class.

5.7.2. Developing Content and Protocol Handlers

The first step in implementing a content handler is to define the class of the object to be
extracted by the content handler. The content handler is then defined as a subclass of the
ContentHandler class. The getContent() method of the content handler performs the
extraction of objects of a specific MIME type from the input stream associated with an
URL Connection object.

A content handler is associated with a specific MIME type through the use of a
ContentHandlerFactory object. The createContentHandler() method of the
ContentHandlerFactory interface is used to return a content handler for a specific MIME

type.

Finally, the setContentHandlerFactory() method of the URLConnection class is used to
set a ContentHandlerFactory as the default ContentHandlerFactory to be used with all
MIME types.

The first step in implementing a protocol handler is to define it as a subclass of the
URL StreamHandler class. The openConnection() method of the protocol handler creates
an URLConnection object that can be used to access an URL designating the specified
protocol.

A protocol handler is associated with a specific protocol type through the use of an
URLStreamHandlerFactory object. The createURLStreamHandler() method of the

99

Java Network Programming

URL StreamHandlerFactory interface is used to return a protocol handler for a specific
protocol type.

The setURLStreamHandlerFactory() method of the URL class is used to set an
URL StreamHandlerFactory as the default URL StreamHandl erFactory to be used with all
protocol types.

When an URL object is created, the system determines the right protocol. The
MalformedURL exception signals that an unparseable URL has been used in the URL
constructor. The first time a protocol name is encountered when constructing a URL, the
appropriate stream protocol handler is automatically loaded.

If everything is correct, a cal to the getContent() method returns the content of the URL.
As it's not possible to know the data type refered to by the URL (text, zip file, tar file,..),
this method returns an Object. The programers must use a cast to convert it to the right
object. For example:

URL u=new URL("zip://ww.inside-java.conftest.zip");
zipFile z=(zipFile) u.getContent();

100

Java Network Programming

6. Developing Servers
6.1. Study Points

* Understand the principles of server-side networking.
* Beableto usethe Server Socket class.

» Understand the working of a number of example servers presented in the text and in
this study guide.

Reference: (1). [INP] Chapters 11. (2). [HSH] Chapters 16, 17. (3). [Java2U]: Chapter
32.

6.2. The ServerSocket Class

6.2.1 Basics of the ServerSocket Class

Servers are like receptionists who sit by the phone and wait for incoming calls. They do
not know who will call and when, only that when the phone rings, they have to pick up
the phone and answer to whoever is there. Java provides a Server Socket class to alow
programmers to write servers behaved like a receptionist.

Technically speaking, a Java Server Socket runs on a server and listens on a particular port
of the server machine for incoming TCP connections. When a client Socket on a remote
host attempts to connect to the port, the server wakes up, negotiates the connection
between the server and the client, and opens a regular Socket between the two hosts for
the regular communi cation between the client and the server.

Multiple clients can connect to the same port on the server at the same time. Incoming
data is distinguished by the port to which it is addressed and the client host and port from
which it came. The server can tell for which service (like http or ftp) the data is intended
by inspecting the port. It can tell which open socket on that service the datais intended by
looking at the client address and port stored with the data.

No more than one server socket can listen to a particular port at one time. Therefore,
since a server may need to handle many connections at once, server programs tend to be
heavily multi-threaded. Generally the server socket listening on the port will only accept
the connections. It then passes off the actua processing of connections to a separate
thread.

The Server Socket contains everything you need to write a server in Java. There are three
public Server Socket constructors:

public ServerSocket (int port) throws | OException, BindException

public ServerSocket (int port, int queueLength) throws |OException,
Bi ndException

public ServerSocket (int port, int queueLength, |netAddress bi ndAddress)
t hrows | CException

101

Java Network Programming

The operating system stores incoming connection requests addressed to a particular port
in an FIFO queue. The default length of the queue is normally 50, though this can vary
from operating system to operating system. Incoming connections are refused if the
queue is already full. Managing incoming queues is done by the operating system. Y ou
can change the default queue length using the above constructors (up to the maximum
length set by the operating system). On most systems the default queue length is between
5 and 50.

Normally you only specify the port you want to listen on, likethis:

try {
Server Socket ss = new Server Socket (80);

}
catch (1 Oexception e) {
Systemerr.printin(e);

}

When you create a ServerSocket object, it attempts to bind to the port on the local host
given by the port argument. If another server socket is already listening to the port, then a
java.net.BindException, a subclass of java.io.lOException, is thrown. No more than one
process or thread can listen to a particular port at a time. This includes non-Java
processes or threads. For example, if there's already an HTTP server running on port 80,
you won't be able to bind to port 80.

On Unix systems (but not Windows or the Mac) your program must be running as root to
bind to a port between 1 and 1023.

0 is a specia port number. It tells Java to pick an available port. You can then find out
what port it's picked with the getLocalPort() method. This is useful if the client and the
server have dready established a separate channel of communication over which the
chosen port number can be communicated.

The following program determines which ports of alocal host are currently occupied by
trying to create server sockets on al of them, and seeing where that operation fails.

i nport java.net.*;
i mport java.io.| OException;

public class Local Port Scanner {
public static void main(String[] args) {

/1 first test to see whether or not we can bind to ports

/1 bel ow 1024

bool ean rootaccess = fal se;

for (int port = 1; port < 1024; port += 50) {

try {

Server Socket ss = new Server Socket (port);
/1 if successful
rootaccess = true;
ss. cl ose();
br eak;

}
catch (1 OException e) {

}
}

int startport = 1;

102

Java Network Programming

if (!'rootaccess) startport = 1024;
int stopport = 65535;
for (int port = startport; port <= stopport; port++) {
try {
Server Socket ss = new Server Socket (port);
ss. cl ose();

}

catch (1 CException e) {
Systemout. println("Port

}

}
}

n

+ port + " is occupied.");

}

6.2.2. An Example

The following example implements a ssmple daytime server, as per RFC 867. Since this
server sends a single line of text in response to each connection, it processes each
connection immediately. More complex servers should spawn a thread to handle each
request. In this case, the overhead of spawning a thread would be greater than the time
used to process the request.

i nport java.net.*;
i mport java.io.*;
i mport java.util.Date;
public class DaytimeServer {
public final static int DEFAULT_PORT = 13;
public static void main(String[] args) {
int port = DEFAULT_PORT,;
if (args.length > 0) {
try {
port = Integer.parselnt(args[0]);
if (port <0 || port >= 65536) {
Systemout. println("Port nust between 0 and 65535");
return;

}

cat ch (Nunber For mat Exception e) {
/] use default port

}

ry {
Server Socket server = new Server Socket (port);

}
t

Socket connection = null;
while (true) {
try {
connection = server.accept();
Qut put StreanWiter out
= new Qut put StreamWiter(connection. get Qut put Streamn());

Date now = new Date();
out.wite(now toString() +"\r\n");
out. flush();
connection. cl ose();

}
catch (1 OException e) {}
finally {

try {
if (connection !'= null) connection.close();

103

Java Network Programming

}
catch (I OException e) {}

}

} // end while

} /1 end try

catch (1 CeException e) {
Systemerr.printin(e);

} // end catch

} // end main
} // end DaytimeServer

Note that if you are running UNIX you cannot use port 13 if you are not the root. You
can then change the port number to, say 1313. The following is the client program to use
this Daytime server (the port number also needs to be changed to the same asthe server’'s
port number if necessary).

i nport java.net.*;
i mport java.io.*;
public class Daytimedient {
public static void main(String[] args) {
String host nane;
if (args.length > 0) {
host nane = args[0];

el se {

host nane = "sky.cm deaki n. edu. au";
}
t

ry {

Socket theSocket = new Socket (hostname, 13);

Input Streamti meStream = theSocket. get | nput Streamn();
StringBuffer time = new StringBuffer();

int c;

while ((c = timeStreamread()) != -1) tine.append((char) c);
String timeString = tinme.toString().trim);
Systemout.println("lIt is " + timeString + " at " + hostnane);
} I/ end try

catch (UnknownHost Exception e) {

Systemerr.printlin(e);

}
catch (1 Oexception e) {
Systemerr.printlin(e);

} // end main
} // end Daytimedient

6.2.3. Use Telnet to Testing Servers

Y ou can aso use the telnet program to test a server. By default, telnet connects to port 23.
To connect to a different server and port, you specify the host name and the port number
in the command line:

tel net |ocal host 13
This example requests a connection to the local host on port 13. If the Daytime server is

executing on the loca host, the response from the server will be displayed on the telnet
window. Y ou can replacel ocal host to the host’s name or | P address of any server.

104

Java Network Programming

6.3. Issuesin Building Servers

6.3.1. Reading Data

There are no getlnputStream() or getOutputStream() methods for ServerSocket. Instead
you use accept() to return a Socket object, and then call its getlnputStream() or
getOutputStream() methods. For example,

try {
Server Socket ss = new Server Socket (2345);

Socket s = ss.accept();

PrintWiter pw = new PrintWiter(s.getQutputStream());
pw.printin("Hello Therel");

pw. printl n(" CGoodbye now.);

s.cl ose();

}
catch (1 Oexception e) {
Systemerr.printin(e);

}

Notice in this example, | closed the Socket s, not the ServerSocket ss. ssis still bound to
port 2345. You get a new socket for each connection but it's easy to reuse the server
socket.

6.3.2. Writing Data

The following simple program repeatedly answers client requests by sending back the
client's address and port. Then it closes the connection.

i mport java.net.*;
i nport java.io.*;

public class Hel |l oServer {
public final static int defaultPort = 2345;
public static void main(String[] args) {
int port = defaultPort;

try {
port = Integer.parselnt(args[0]);

}
catch (Exception e) {

}
if (port <= 0 || port >= 65536) port = defaultPort;
try {
Server Socket ss = new Server Socket (port);
while (true) {
try {
Socket s = ss.accept();
PrintWiter pw = new PrintWiter(s.getQutputStream));
pw.println("Hello " + s.getlnetAddress() + " on port "
+ s.getPort());
pw.println("This is " + s.getlLocal Address() + " on port "
+ s.getLocal Port());
pw. fl ush();
s.close();

105

Java Network Programming

catch (1 CeException e) {

}
}

}
catch (1 Oexception e) {
Systemerr.println(e);

}

Y ou can run this program on a host and then try to use Telnet to connect the host via port
2345 severa times. You may then note how the port from which the connection comes

changes each time.

6.3.3. Interacting with a Client

Commonly a server needs to both read a client request and write a response. The
following program reads whatever the client sends and then sends it back to the client. In

short thisis an echo server.

i nport java.net.*;
i mport java.io.*;
public class EchoServer {

public final static int defaultPort

= 2346;

public static void main(String[] args) {

int port = defaultPort;
try {

port = Integer.parselnt(args[0]);

catch (Exception e) {

}

if (port <= 0 || port >= 65536) port = defaultPort;

try {

Server Socket ss = new Server Socket (port);

while (true) {
try {

Socket s = ss.accept();

Qut put St ream os = s. get Qut put Stream();
Input Streamis = s.getlnputStrean();

while (true) {
int n=is.read();
if (n==-1) break;
os.wite(n);
os. flush();

}

}
catch (1 Cexception e) {
}

}

}
catch (1 Oexception e) {
Systemerr.println(e);
}
}
}

106

Java Network Programming

6.3.4. Parallel Processing

The operation of most servers involves listening for connections, accepting connections,
processing requests received over the connections, and terminating connections after all
requests have been processed. The handling of multiple connections is generaly
performed using multiple threads. As such, a generd framework for multithreaded
servers can be shown as the following GenericServer.java program.

i mport java.net.*;
i nport java.io.*;
i mport java.util.*;
public class GenericServer {
/1 Replace 1234 with the well-known port used by the server.
int serverPort = 1234;
public static void main(String args[]){
/]l Create a server object and run it
CenericServer server = new CGenericServer();
server.run();

}
public GenericServer() {
super () ;

}
public void run() {
try {
/1 Create a server socket on the specified port
Server Socket server = new Server Socket (serverPort);
do {
/1 Loop to accept incom ng connections
Socket client = server.accept();
/1 Create a new thread to handl e each connection
(new ServerThread(client)).start();
} while(true);
} catch(1 OException ex) {
System exit(0);
}

}

class ServerThread extends Thread {
Socket client;
/] Store a reference to the socket to which the client is connected
public ServerThread(Socket client) {
this.client = client;

/1l Thread's entry point
public void run() {
try {
/1 Create streans for conmunicating with client
Servi ceQut put Stream out Stream = new Ser vi ceQut put St r ean(
new Buf f er edQut put Stream(client. getQutputStrean()));
Servi cel nput Stream i nStream =
new Servi cel nput Strean{client.getlnputStrean());
/1 Read client's request frominput stream
Servi ceRequest request = inStream get Request();
/'l Process client's request and send output back to client
whil e (processRequest (outStream) {};
}catch(l CException ex) {
System exit(0);
}

try {
client.close();

107

Java Network Programming

}catch(l CException ex) {
System exit(0);
}

/1 Stub for request processing
publ i ¢ bool ean processRequest (Servi ceQut put Stream out Strean) {
return fal se;
}
}

/1 Input streamfilter
cl ass Servicel nput Stream extends Filterl nputStream {
public Servicel nput Strean(| nput Streamin) {
super (in);

/1 Method for reading client requests frominput stream

publ i c Servi ceRequest get Request() throws | OException {
Servi ceRequest request = new ServiceRequest();
return request;

}

/1 Qutput streamfilter
class ServiceCut put Stream extends FilterQutputStream {
public ServiceCut put Strean{ Qut put Stream out) {
super (out);
}

/1l Class to inplenent client requests
class Servi ceRequest {

}

The GenericServer class is the main class of the program. It defines serverPort as the
number of the port that the server is to listen on. You would change 1234 to the well-
known port of the service that the server is to implement. The main() method creates an
instance of GenericServer and invokes the instance's run() method. The run() method
creates a new ServerSocket and assigns the socket to the server variable. It then executes
an infinite loop where it listens for an incoming connection and creates a Socket instance
to service the connection. The Socket instance is assigned to the client variable. A new
ServerThread object is created to process client requests and the start() method of this
object isinvoked to get the thread up and running.

The ServerThread class extends the Thread class. It declares the client field variable to
keep track of the client socket. Its run() method creates objects of class
ServicelnputStream and ServiceOutputStream to communicate with the client. These
streams are buffered to enhance 1/0 performance. A while statement is used to repeatedly
invoke the processRequest() method to process client requests. If processRequest()
returns a value of false, the service is completed, the while loop ends, and the client
socket is closed. The processRequest() method is a stub for implementing service-specific
regquest processing.

The ServicelnputStream, ServiceOutputStream, and ServiceRequest classes are
placeholders for implementing client 1/0 and request processing.

108

Java Network Programming

6.4. Some Useful Servers

6.4.1. Testing Clients

Aswe mentioned in section 6.2.3, you can use telnet to test a server. However, thereisno
such an equivalent utility for testing clients. The following example is used for such a
purpose. This program uses two threads to handle input and output simultaneously: one to
handle input from a client and the other to send output from the server.

i nport java.net.*;
i nport java.io.*;
i mport com macf aq. i 0. Saf eBuf f er edReader ;
public class CientTester {
public static void main(String[] args) {
int port;
try {
port = Integer.parselnt(args[0]);

}
catch (Exception e) {
port = O;
}
try {
Server Socket server = new Server Socket (port, 1);
System out. println("Listening for connections on port
+ server.getLocal Port());
while (true) {
Socket connection = server. accept();
try {
System out. println("Connection established with "
+ connection);
Thread i nput = new | nput Thread(connecti on. getlnput Stream());
input.start();
Thr ead out put
= new Qut put Thr ead(connecti on. get Qut put Stream());
output.start();
/1 wait for output and input to finish
try {
input.join();
out put.join();

}
catch (InterruptedException e) {

}

}
catch (1 CeException e) {
Systemerr.println(e);

}
finally {

try {
if (connection != null) connection.close();

}
catch (1 OException e) {}

}
}

}
catch (1 Oexception e) {
e.printStackTrace();

}
}

cl ass I nput Thread extends Thread {

109

Java Network Programming

I nput Stream i n;
public InputThread(l nputStreamin) {
this.in =in;
}
public void run() {
try {
while (true) {
int i =in.read();
if (i == -1) break;
Systemout.wite(i);

}

catch (Socket Exception e) {
/1 output thread cl osed the socket

}

catch (1 OException e) {
Systemerr.println(e);

}

try {
in.close();

catch (1 OCexception e) {

}
}

class Qut put Thread extends Thread {
Witer out;
publ i ¢ Qut put Thr ead(Qut put St ream out) {
this.out = new Qutput StreamWiter(out);

}
public void run() {
String line;
Buf f er edReader in
= new Saf eBuf f er edReader (new | nput St r eanReader (Systemin));
try {
while (true) {
line = in.readLine();
if (line.equals(".")) break;
out.wite(line +"\r\n");
out.flush();

}

}
catch (1 Oexception e) {
}

try {
out. close();

}
catch (1 Oexception e) {

}
}

The program uses a specia reader, the SafeBufferedReader, defined in the program
SafeBufferedReader .java, to read lines from an InputSreamReader. The programis listed
asfollows. You need to compileit using the “ -d” option of the javac compiler to save the
compiled package into the right class path.

package com macfag.i o;

i nport java.io.*;

public class Saf eBufferedReader extends BufferedReader {
publ i ¢ Saf eBuf f er edReader (Reader in) {

110

Java Network Programming

this(in, 1024);

}

publ i ¢ Saf eBuf f er edReader (Reader in, int bufferSize) {
super (i n, bufferSize);

}

private bool ean | ooki ngForLi neFeed = fal se;

public String readLine() throws | OException {
StringBuffer sb = new StringBuffer("");
while (true) {

int ¢ = this.read();

if (c ==-1) { /] end of stream
return null;
elseif (c =="'\n") {

i f (1 ookingForlLineFeed) {
| ooki ngFor Li neFeed = fal se;

conti nue;
}
el se {
return sb.toString();
}
else if (c =="'\r") {

| ooki ngFor Li neFeed = true;
return sb.toString();

el se {
| ooki ngFor Li neFeed = fal se;
sb. append((char) c);

}
}
}

You may test the program by running the ClientTester server on your local host and
listens to a port. For example, the following command runs the server on port 80, which
isthe default port of aweb server:

Java Cient Tester 80

Y ou then can use a web browser to connect to the server. The server will then output the
testing result for the web browser. Commands can be sent from the server to the client via
the server window. The “.” command will end the connection.

6.4.2. Building a Web Server

The textbook describes a number of steps and examplesin building a web server. It has a
brief introduction on the HTTP protocol and the requests and responses of the protocol.
Then a complete discussion on a web server is presented in the text (pages 369-387.
Students are encouraged to understand the principles presented in this chapter and test
run the examples given in the chapter.

111

Java Network Programming

7. Connectionless Communication in Java

7.1. Study Points

* Understand the difference of datagram and TCP communication mechanisms.

» Understand the DatagramSocket and the DatagramPacket clases.

» Beableto use datagrams to complete simple Java communication programs.

* Understand the application programs presented in the textbook and this study guide.
Reference: (1). [INP]: Chapter 13. (2). [HSH] Chapters 20, 21.

7.2. Connectionless Communication Basics

For many applications the convenience of the TCP sockets outweighs the overhead
required. However, for certain applications it is much more efficient to utilize
connectionless communications via datagrams. small, fixed-length messages sent
between computers of a network.

7.2.1. Why Datagrams

A TCP connection carries a number of overhead. First, one needs to go through severa
steps to open a connection. This takes certain time. Once a connection is open, sending
and receiving data each involving several steps. The fina step is to tear down the
connection after the communication. If one is to send large amount of data that must be
reliably delivered, then the TCP protocol is suitable. However, if one only needsto send a
short, simple message quickly, then all these steps may not be worthwhile.

The difference between datagram and TCP connections is like the difference between
pagers and telephones. With a telephone, you make a connection to a specific telephone
number, if the person on the destination answers the phone, you two are able to talk for
certain period of time, exchanging arbitrary amount of information, and then you close
the connction. With a pager, you typically send a message via a radio tower one-way to a
tiny radio receiver. Because of broadcast difficulties and delays you cannot be certain if
or when the paged party receives the message. The only way to tell isif you request and
receive some kind of acknowledgement. You may retry several times if you get no
response, then give up.

On an IP network such athe Internet, the UDP (Unreliable Datagram Protocol) is used to
transmit fixed-length datagrams. This is the protocol that Java taps with the
DatagramSocket class. Protocols that use UDP include NFS, FSP, and TFTP.

7.2.2. Overview of Datagrams

Datagrams have the following advantages:

e Speed. UDP involves low overhead since there is no need to set up the
connection, to maintain the order and correctness of the message delivery, and to
tear down the connection after the communication.

112

Java Network Programming

* Message-oriented instead of stream-oriented. If the message to be sent is small
and simple, it may be easier to simply send the chunk of bytes instead of going
through the steps of converting it to and from streams.

Two java.net classes define the heart of datagram-based messaging in Java, the
DatagramSocket and the DatagramPacket.

The DatagramSocket is the interface through which DatagramPacket are transmitted. A
DatagramPacket is simply an | P-specific wrapper for ablock of data.

The DatagramSocket class provides a good interface to the UDP protocol. This class is
responsible for sending and receiving DatagramPacket via the UDP protocol. The most
commonly used DatagramSocket methods are listed below:

» DatagramSocket(). Constructor comes in two formats: one is used to specify the
local port used and the other the system picks an ephemeral local port for you.

* receive(). Receive a DatagramPacket from any remote server.

e send(). Send a DatagramPacket to the remote server specified in the
DatagramPacket.

e closg(). Tear down local communication resources. After this method has been
caled, release this object.

» getLocalPost(). Returns the local port this DatagramSocket is using.

Note that there are two flavors of DatagramSocket: those create to send
DatagramPackets, and those created to receive DatagramPackets. A “send”
DatagramSocket uses an ephemeral local port assigned by the native UDP
implementation. A “receive’” DatagramSockect requires a specific local port number.

A DatagramPacket represents the datagram transmitted via a DatagramSocket. The most
frequently used methods of DatagramPacket are:

» DatagramPacket(). Constructor comes in two formats: a “send” packet and a
“receive’ packet. For the send packet, you need to specify a remote InetAddress
and a port to which the packet should be sent, as well as a data buffer and length
to be sent. For the receive packet, you need to provide an empty buffer into which
data should be stored, and the maximum number of bytes to be stored.

» getAddress(). This method allows one to either obtain the InetAddress of the host
that sent the DatagramPacket, or to obtain the InetAddress of the host to which
this packet is addressed.

» getData(). This method allows one to access the raw binary data wrapped in the
DatagramPacket.

e getLength(). This method alows one to determine the length of data wrapped in
the DatagramPacket without getting a reference to the data block itself.

» getPort(). This method returns either the port of the server to which this packet
will be sent, else it returns the port of the server that sent this packet, depending
on whether the packet was built to be sent or built to receive data.

113

Java Network Programming

It is also possible to exchange data via datagrams using the Socket class. To do so, you
must use one of the Socket constructors that includes the Boolean useStream parameter,
asin,

Socket (1 net Address address, int port, Boolean useStream

And set useStream to false. This tells Socket to use the faster UDP. The advantage to use
this interface is that it provides a stream interface to datagram. Also, there is no need to
instantiate and maintain a separate DatagramPacket to hold the data.

But there are significant disadvantages as well. First, there is no way to detect if a
particular datagram sent does not arrive to the destination. Y our stream interface can lie
to you. Second, you still have to go through the hassle of setting up the connection.

UDP ports are separate from TCP ports. Each computer has 65,536 UDP ports as well as
its 65,536 TCP ports. You can have a ServerSocket bound to TCP port 20 at the same
time as a DatagramSocket is bound to UDP port 20. Most of the time it should be obvious
from context whether or not I'm talking about TCP ports or UDP ports.

7.2.3. A Local Port Scanner

The Loca PortScanner developed in Section 6.2.1 only found TCP ports. The following
program detects UDP ports in use. As with TCP ports, you must be root on Unix systems
to bind to ports below 1024.

i mport java.net.*;
i mport java.io.| OException;
public class UDPPort Scanner {
public static void main(String[] args) {
/1 first test to see whether or not we can bind to ports
/1 bel ow 1024
bool ean rootaccess = fal se;
for (int port = 1; port < 1024; port += 50) {
try {
Server Socket ss = new Server Socket (port);
/1 if successful
rootaccess = true;
ss.cl ose();
br eak;

}
catch (1 Oexception e) {
}

int startport = 1;
if ('rootaccess) startport = 1024;
int stopport = 65535;
for (int port = startport; port <= stopport; port++) {
try {
Dat agr anSocket ds = new Dat agr anSocket (port);
ds. cl ose();

}
catch (1 Oexception e) {
Systemout.println("UDP Port " + port + " is occupied.");
}
}
}
}

114

Java Network Programming

Since UDP is connectionless it is not possible to write a remote UDP port scanner. The
only way you know whether or not a UDP server is listening on a remote port is if it
sends something back to you.

7.2.4. Sending and Receiving UDP Datagrams

To send data to a particular server, you first must convert the data into byte array. Next
you pass this byte array, the length of the data in the array (most of the time this will be
the length of the array) and the InetAddress and port to which you wish to send it into the
DatagramPacket() constructor. For example,

try {
I net Address turin = new | net Addess("turin.cm deakin. edu. au");

int chargen = 19;

String s = "My second UDP Packet";

byte[] b = s.getBytes();

Dat agr anPacket dp = new Dat agranPacket (b, b.length, turin, chargen);

}
catch (UnknownHost Exception e) {
Systemerr.printin(e);

}

Next you create a DatagramSocket object and pass the packet to its send() method: For
example,

try {
Dat agr anSocket sender = new Dat agr anSocket () ;

sender . send(dp);

}
catch (1 CeException e) {

Systemerr.printin(e);
}
To receive data sent to you, you construct a DatagramSocket object on the port on which
you want to listen. Then you pass an empty DatagramPacket object to the
DatagramSocket's receive() method.

public synchronized void receive(DatagramPacket dp) throws |OException

The calling thread blocks until the a datagram is received. Then dp is filled with the data
from that datagram. You can then use getPort() and and getAddress() to tell where the
packet came from, getData() to retrieve the data, and getLength() to see how many bytes
were in the data. If the received packet was too long for the buffer, then it's truncated to
the length of the buffer. For example,

try {
byte buffer = new byte[65536]; // maximum size of an |IP packet
Dat agr anPacket incom ng = new Dat agr amPacket (buffer, buffer.length);
Dat agr anSocket ds = new Dat agr anSocket (2134) ;
ds. receive(dp);
byte[] data = dp.getData();

115

Java Network Programming

String s = new String(data, 0, data.getlLength());
Systemout.println("Port " + dp.getPort() + " on " + dp.get Address()
+ " sent this nessage:");

Systemout.println(s);

}

catch (1 CeException e) {
Systemerr.printin(e);

}

7.3. Simple Examples of Connectionless Communication

7.3.1. The Server

The steps for setting up a datagram server is as follows:

» Create a DatagramPacket for receiving the data, indicating the buffer to hold the
data and the maximum length of the buffer.

» Create a DatagramSocket to listen to on.
* Receive apacket from the client.
Hereisasimple server example. The program is named as DatagramReceive.java.
i nport java.net.*;
public class Dat agranRecei ve {
static final int PORT = 7890;
public static void main(String args[]) throws Exception {
String theReceiveString;
byte[] theReceiveBuffer = new byte[2048];
/1 Make a packet to receive into...
Dat agr anPacket theRecei vePacket =
new Dat agr anPacket (theRecei veBuffer, theReceiveBuffer.length);

/1 NMake a socket to listen on...
Dat agr anSocket t heRecei veSocket = new Dat agr anSocket (PORT);

/1 Receive a packet...
t heRecei veSocket . recei ve(theRecei vePacket);

/1 Convert the packet to a string...
t heReceiveString =
new String(theReceiveBuffer, 0, theReceivePacket.getlLength());

/1l Print out the string...
Systemout.println(theReceiveString);

/1 ose the socket...
t heRecei veSocket . cl ose();

}

7.3.2. The Client
The steps of setting up a datagram client is as follows:

116

Java Network Programming

* Find the destination’s I P address.
» Create a DatagramPacket based on the destination address and the data to be sent.
» Create a DatagramSocket for sending the packet.
* Send the DatagramPacket over the DatagramSocket.
Here is the program named DatagramSend.java:

i mport java.net.*;
i mport java.io.| OException;

public class DatagrantSend {
static final int PORT = 7890;
public static void main(String args[]) throws Exception {
String theStringToSend = "I'ma datagramand I'm QO K. ";
byte[] theByteArray = new byte[theStringToSend.|length()];
t heByteArray = theStringToSend. get Byt es();

/1 Get the | P address of our destination...

| net Addr ess t hel PAddress = nul | ;

try {
t hel PAddress = | net Addr ess. get ByNane("l ocal host");

} catch (UnknownHost Exception e) {
System out. println("Host not found:
Systemexit(1);

}

/1 Build the packet...

Dat agr anPacket thePacket = new Dat agr anPacket (theByteArray,
theStringToSend. | ength(),
t hel PAddr ess,
PORT);

n

+ e);

/1 Now send the packet
Dat agr anSocket theSocket = null;

try {
t heSocket = new Dat agr anfSocket () ;

} catch (Socket Exception e) {
Systemout. println("Underlying network software has failed: " + e);
Systemexit(1);
}
try {
t heSocket . send(thePacket);
} catch (I Oexception e) {
Systemout.println("l O Exception: " + e);

}

t heSocket . cl ose();

}

7.3.3. A Time Server Application

The TimeServerApp.java and GetTimeApp.java programs illustrate further the use of
client/server computing using datagrams. TimeServerApp listens on a UDP socket on
port 2345 for incoming datagrams. When a datagram is received, it displays the data
contained in the datagram to the console window and returns a datagram with the current

117

Java Network Programming

date and time to the sending client program. It terminates its operation when it receives a
datagram with the text quit asits data.

The GetTimeApp.java program sends five datagrams with the text time in each datagram
to local port 2345. After sending each datagram, it waits for a return datagram from
TimeServerApp. It displays the datagrams that it sends and receives to the console
window. It then sends a quit datagram to TimeServerApp and terminates its operation.

The TimeServerApp.java program is shown below:

i nport java.l ang. System
i nport java. net. Dat agr anSocket ;
i mport j ava. net. Dat agr anPacket ;
i nport java.net. | net Address;
i mport java.io.| OException;
i mport java.util.Date;
public class Ti neServerApp {
public static void main(String args[]){
try{
Dat agr anSocket socket = new Dat agr anSocket (2345) ;
String | ocal Address = | net Address. get Local Host (). get Host Name().trim();
int |ocal Port = socket.getLocal Port();
System out. print (| ocal Address+": ");
Systemout.println("Tinme Server is |listening on port "+l ocal Port+".");
int bufferLength = 256;
byte outBuffer[];
byte inBuffer[] = new byte[bufferLength];
Dat agr anPacket out Dat agr am
Dat agr anPacket i nDat agram =
new Dat agr anPacket (i nBuf fer,inBuffer.l|ength);
bool ean finished = fal se;
do {
socket . recei ve(i nDat agranj ;
I net Addr ess dest Address = i nDat agram get Addr ess();
String dest Host = dest Address. get Host Nanme().trim();
int destPort = inDatagram getPort();
Systemout. println("\nReceived a datagram from "+dest Host +" at port "+
destPort+".");
String data = new String(inDatagramgetData()).trin();
Systemout.println("lIt contained the data: "+data);
i f (dat a. equal sl gnoreCase("quit")) finished=true;
String time = new Date().toString();
out Buf fer=tine. get Bytes();
out Dat agr am =
new Dat agr anPacket (out Buf f er, out Buf fer. | engt h, dest Addr ess,
dest Port);
socket . send(out Dat agr an ;
Systemout.println("Sent "+tine+" to "+destHost+" at port "+
destPort+".");
} while(!finished);
}catch (I OException ex){
Systemout. println("lI OException occurred.");
}
}
}

The code for GetTimeApp.javaislisted below:

118

Java Network Programming

i nport java.l ang. System
i mport j ava. net. Dat agr anSocket ;
i nport java. net. Dat agr anPacket ;
i nport java.net. | net Address;
i mport java.io.| OException;
public class GetTimeApp {
public static void main(String args[]){

try{
Dat agr anSocket socket = new Dat agr anSocket () ;
I net Addr ess | ocal Address = | net Addr ess. get Local Host () ;

String | ocal Host = | ocal Addr ess. get Host Nane() ;
int bufferLength 256;
byte outBuffer[];
byte inBuffer[] = new byte[bufferLength];
Dat agr anPacket out Dat agr am
Dat agr anPacket i nDat agram =
new Dat agr anPacket (i nBuf fer,inBuffer.l|ength);
for(int i=0;i<5;++){
out Buf fer = new byt e[buf ferLengt h];
outBuffer = "time".getBytes();
out Dat agr am = new Dat agr anPacket (out Buf f er, out Buf fer. | engt h,
| ocal Addr ess, 2345);
socket . send(out Dat agr an ;
Systemout.println("\nSent time request to "+l ocal Host +
' at port 2345.");
socket . recei ve(i nDat agramn ;
I net Addr ess dest Address = i nDat agram get Address();
String dest Host = dest Address. get Host Name().trin();
int destPort = inDatagram getPort();
Systemout. println("Received a datagram from "+dest Host+" at port "+
destPort+".");
String data = new String(inDatagram getData());
data=data.trin();
Systemout.println("lIt contained the followi ng data: "+data);

out Buf fer = new byt e[buf ferLength];
outBuffer = "quit".getBytes();
out Dat agr am = new Dat agr anPacket (out Buf f er, out Buf fer. | engt h,
| ocal Addr ess, 2345);
socket . send(out Dat agr anj ;
}catch (I OException ex){
Systemout. println("lI OException occurred.");

}
}
}

TimeServerApp and GetTimeApp should be run in separate windows. These two simple
programs illustrate the basic mechanics of datagram-based client/ server applications. A
UDP client sends a datagram to a UDP server at the server's port address. The UDP
server listens on its port for a datagram, processes the datagram, and sends back
information to the UDP client.

7.4. Some Datagram Applications

This section is to study some example datagram applications. The first example uses an
alarm to trigger a resend of packets if no response is received to a transmission. The
assumption is that the server should send back a reply within a certain period of time. If
the response is not received within the time, then the packet is lost. The second example

119

Java Network Programming

is a Ping client, dlowing a user to determine whether a remote host is alive, and so to
determine the round-trip time of packets sent to the host.

7.4.1. A Reliable UDP Packet Delivery Example

The server is a simple echo server, with some code for simulating the lost of packets. In
reality, a UPD packet may be discarded if the network is congested. This might be
common on the Internet, but isvery rarein a LAN.

The server program is named as UDPEchoServer.java. It creates a UDP socket, then
waits for packets, echoing back what it receives. We simulate 10 percent packet loss to
demonstrate the function of the program. Although UDP may drop packets naturally due
to network congestions, thisis not commonly observable on asmall LAN.

/* UDPEchoServer.java */
i nport java.net.*;
i mport java.io.*;

public class UDPEchoServer {
protected int port;

publ i c UDPEchoServer (int port) {
this.port = port;

}

public void execute () throws | OException {
Dat agr anSocket socket = new Dat agr anSocket (port);
while (true) {
Dat agr anPacket packet = receive (socket);
if (Math.random () < .9) {
sendEcho (socket, packet);
} else {
Systemout.println ("Dropped!");
}
}
}

prot ect ed Dat agranPacket receive (DatagranSocket socket) throws | OException {
byte buffer[] = new byte[65508];
Dat agr anPacket packet = new Dat agranPacket (buffer, buffer.length);
socket . recei ve (packet);
return packet;

}

protected voi d sendEcho (Dat agranmSocket socket, DatagranPacket packet) throws
| CException {
Dat agr anPacket response = new Dat agr anPacket
(packet.getData (), packet.getlLength (),
packet . get Address (), packet.getPort ());
socket.send (response);

}

public static void main (String[] args) throws | OException {
if (args.length !'= 1)
throw new ||| egal Argunent Exception ("Syntax: UDPEchoServer <port>");
UDPEchoSer ver server = new UDPEchoServer (Integer.parselnt (args[0]));
server. execute ();

}

120

Java Network Programming

The client program is named as SureDelivery.java. This program attempts to protect
against packet loss by resending arequest if no response is received within a certain time-
out (10 seconds in this example).

i nport java.net.*;
i mport java.io.*;

public class SureDelivery inplenments Al arnmabl e {
prot ect ed Dat agranSocket socket;
prot ect ed Dat agranmPacket packet;
protected Alarmal arm

public SureDelivery (String nmessage, String host, int port)
throws | OException {
socket = new Dat agr anSocket ();
bui | dPacket (nmessage, host, port);
try {
sendPacket ();
recei vePacket ();
} finally {
alarmstop ();
socket.cl ose ();
}
}

protected voi d buil dPacket (String nmessage, String host, int port) throws
| CException {
Byt eArrayQut put St ream byt eArrayQut = new Byt eArrayQut put Stream ();
Dat aCQut put St ream dat aCut = new Dat aCut put Stream (byt eArrayCQut) ;
dataCut.witeUTF (nmessage);
byte[] data = byteArrayQut.toByteArray ();
packet = new Dat agranPacket (data, data.length, |netAddress.getByNanme
(host), port);
}

protected voi d sendPacket () throws | OException {
socket.send (packet);
Systemout.println ("Sent packet.");
alarm = new Al arm (10000, this);
alarmstart ();

}

protect ed bool ean recei ved,;

protected void receivePacket () throws | CException {
byte buffer[] = new byte[65508];
Dat agr anPacket packet = new Dat agr anPacket (buffer, buffer.length);
socket . recei ve (packet);
received = true;
Byt eArrayl nput Stream byteArrayln =
new Byt eArrayl nput St ream (packet.getData (), 0, packet.getlLength ());
Dat al nput St ream dat al n = new Dat al nput St ream (byt eArrayl n);
String result = datal n.readUTF ();

Systemout.println ("Received " + result + ".");

}

public synchroni zed void alarntCall (Cbject object) {
try {

Systemout.println ("Alarm");

121

Java Network Programming

if (!'received)
sendPacket ();
} catch (I OException ex) {
ex. printStackTrace ();

}
}

public static void main (String[] args) throws I|nterruptedException,
| CException {

if (args.length != 3)

throw new ||| egal Argunent Excepti on
("Syntax: SureDelivery <host> <port> <nessage>");

while (true) {
new SureDelivery (args[2], args[0O], Integer.parselnt (args[1]));
Systemout.println ("Pause...");
Thr ead. sl eep (2000);

}
}
}

The time-out is performed by the Alarm class of the following Alarm.java program. This
class allows usto schedule a callback to occur after a specified delay.

public class Alarminpl ements Runnable {
public Alarm (int tinme, A armable target) {
this (tine, target, null);

}

protected Al armabl e target;

protected Object arg;

protected int tineg;

public Alarm (int time, Alarmable target, Object arg) {
this.tine = tine;
this.target = target;
this.arg = arg;

}

protected Thread al arm
public synchroni zed void start () {
if (alarm== null) {
alarm = new Thread (this);
alarmstart ();
}
}

public synchroni zed void stop () {
if (alarm!= null) {
alarminterrupt ();
alarm= nul | ;

}
}

public void run () {
try {
Thread. sl eep (tine);
synchroni zed (this) {
if (Thread.interrupted ())
return;
alarm= null;

}

122

Java Network Programming

target.alarnCall (arg);
} catch (InterruptedException ignored) {

}
}

An object that wishes to receive adarm cals must implement an interface called
Alarmable, defined in the following Alarmablejava program. An Alarmable object is
thus any object that might receive an alarm call to signa an event. In this program, we
use this mechanism to resend lost packets.

public interface Al armable {
public void alarnCall (Ooject arg);

}

To test this program, you need to run the server program first and specify a port for
accepting client calls:

>j ava UDPEchoServer 2345

Then the client program can be executed. The host, port, and message are to be specified
in the command line. For example, if the server runs on a computer called
“turin.cm.deakin.edu.au”, then the execution of the client could be:

>java SurebDelivery turin.cm deakin.edu.au 2345 “This is a test nessage”

7.4.2. A Ping Client

The ping protocol (RFC 862) is very commonly used in getting the liveness information
of aremote node. For each hogt, if it isalive, it has asimple echo server running on port 7
to ssmply echo back any packets that are received. The application then sends a packet to
port 7 of the remote machine in question. If it responses, then it is alive. Note that not all
machines support this service, so sometimes ping will not response even the remote node
is dive. Also, some firewalls may block these echo packets before they arrive the
destination. However, if you know a server is running on a port (above 1024), you may
test the Ping client by specifying the port number in the command line. The Ping
command has the following format:

Ping [-c <count>] [-] <wait>] [-s <packetsize>] [-f] <hostnane>[:<port>]
The following Ping.java program implements the ping command.

i mport java.io.*;
i nport java.net.*;

123

Java Network Programming

public class Ping {
static final int DEFAULT_PORT = 7;
static final int UDP_HEADER = 20 + 8;
static final int BACKSPACE = 8;

public static void main (String[] args) throws | CException {
parseArgs (args);
init ();
for (int i =0; (i <count) || (count == 0); ++ i) {
long past = SystemcurrentTimeMIlis ();
ping (i, past);
try {
pong (i, past);
} catch (Interruptedl OException ignored) {

socket.cl ose ();
printStats ();

}

static String host = null;
static int port, count = 32, delay = 1000, size = 64;
static boolean flood = fal se;

static void parseArgs (String args[]) {
for (int i =0; i <args.length; ++ i) {
if (args[i].startsWth ("-")) {

if (args[i].equals ("-c") && (i < args.length - 1))
count = Integer.parselnt (args[++ i]);

else if (args[i].equals ("-i") & (i < args.length - 1))
delay = Math. max (10, Integer.parselnt (args[++ i]));

else if (args[i].equals ("-s") & (i < args.length - 1))
size = Integer.parselnt (args[++ i]);

else if (args[i].equals ("-f"))
flood = true;

el se
syntaxError ();
} else {
if (host !'= null)

syntaxError ();
int colon = args[i].indexOf (":");
host = (colon > -1) ? args[i].substring (0, colon) : args[i];
port = ((colon > -1) && (colon < args[i].length () - 1)) ?
I nt eger. parselnt (args[i].substring (colon + 1)) : DEFAULT_PORT;
}

if (host == null)
syntaxError ();
}

static void syntaxError () {
throw new ||| egal Argunment Excepti on
("Ping [-c count] [-i wait] [-s packetsize] [-f] <hostname>[:<port>]");

static DatagranBSocket socket;
static byte[] outBuffer, inBuffer;
static DatagranPacket outPacket, inPacket;

static void init () throws | OException {

socket = new Dat agr anSocket ();
out Buf fer = new byte[Math. max (12, size - UDP_HEADER)];

124

Java Network Programming

out Packet = new Dat agr anPacket (outBuffer, outBuffer.Ilength,

I net Addr ess. get ByNane (host), port);
new byt e[outBuffer.|ength];
new Dat agr anPacket (inBuffer, inBuffer.length);

i nBuf f er
i nPacket

}

static int sent = 0O;

static void ping (int seq, long past) throws | OException {
witelnt (seq, outBuffer, 0);
writelLong (past, outBuffer, 4);
socket . send (out Packet);
++ sent;
if (flood) {
Systemout.wite ('.");
Systemout.flush ();
}
}

static final void witelnt (int datum byte[] dst, int offset) {
dst[of fset] = (byte) (datum >> 24);
dst[of fset + 1] = (byte) (datum >> 16);
dst[of fset + 2] (byte) (datum >> 8);
dst[of fset + 3] (byte) datum

}

static final void witelLong (long datum byte[] dst, int offset) {
witelnt ((int) (datum>> 32), dst, offset);
witelnt ((int) datum dst, offset + 4);

}

static int received = 0;

static void pong (int seq, |long past) throws | CException {
long present = SystemcurrentTimeMIlis ();
int tnpRTT = (maxRTT == 0) ? 500 : (int) maxRTT * 2;
int wait = Math.max (delay, (seq == count - 1) ? tnpRTT : 0);
do {
socket . set SoTi neout (Math.max (1, wait - (int) (present - past)));
socket . receive (inPacket);
++ received,;
present = SystemcurrentTineMIlis ();
processPong (present);
} while ((present - past < wait) && !flood);

static long m nRTT = 100000, nmaxRTT = 0, totRTT = O;

static void processPong (long present) {
int seq = readlnt (inBuffer, 0);
| ong when = readLong (inBuffer, 4);
long rtt = present - when;
if (!flood) {
Systemout. println
((inPacket.getlLength () + UDP_HEADER) +
" bytes from" + inPacket.get Address ().getHostNane () +
": seqno " +seq+ " time=" + rtt + " nms");
} else {
System out.write (BACKSPACE);
Systemout.flush ();

tt < mnRTT) m nRTT

f (r ret;
f (rtt > maxRTT) maxRTT

}
i
i rtt;

125

Java Network Programming

totRTT += rtt;
}

static final int readlnt (byte[] src, int offset) {
return (srcf[offset] << 24) | ((src[offset + 1] & Oxff) << 16) |
((src[offset + 2] & Oxff) << 8) | (src[offset + 3] & Oxff);
}

static final long readLong (byte[] src, int offset) {
return ((long) readlnt (src, offset) << 32) |
((long) readlnt (src, offset + 4) & OxfffffffflL);

static void printStats () {
Systemout. println
(sent + " packets transnitted, + received + packets received, " +
(100 * (sent - received) / sent) + "% packet |oss");
if (received > 0)
Systemout.println ("round-trip mn/avg/max =" + mnRTT + '/' +
((float) totRTT / received) + '/' + maxRTT + " ms");

n n

To test the program, we use the host of smeagol.cm.deakin.edu.au to run the
UDPEchoServer server using port 2345. The test would result in:

>java Ping —c 6 sneagol .cm deaki n. edu. au: 2345

64 bytes from smeagol . cm deaki n. edu. au: seq no 0 tinme=60 ns
64 bytes from smeagol . cm deaki n. edu. au: seq no 2 tinme=0 ns
64 bytes from smeagol . cm deaki n. edu. au: seq no 3 tinme=0 ns
64 bytes from smeagol . cm deaki n. edu. au: seq no 5 tinme=0 ns
6 packets transmtted, 4 packets received, 33% packet |oss
round-trip mn/avg/ max = 0/ 15.0/60 ns

126

Java Network Programming

8. Parallel Processing in Java
8.1. Study Points

» Understand the principles of parallel processing.

» Understand the basic concepts of Java threads.

» Beableto create parallel client-server Internet applications using Java threads.
Reference: (1). [INP]: Chapter 5. (2). [HSH] Chapter 4. (3). [Java2H]: chapter 7.

8.2. Parallel Processing

8.2.1. Concurrency vs. Parallelism.

Let us differentiate concurrency from paralelism first. Concurrent multithreading
systems give the appearance of several tasks executing at once, but these tasks are
actually split up into chunks that share the processor with chunks from other tasks. The
following figure (Figure 8.1) illustrates the issues. In parallel systems, two tasks are
actually performed simultaneously. Parallelism requires a multiple-CPU system.

Concurrency Parallelism
Time Time
Task 1 Task 2
o
@ —
= =
izh
2
L 4 L J

Figure 8.1. Concurrency vs. parallelism

Unless you're spending a lot of time blocked, waiting for 1/0 operations to complete, a
program that uses multiple concurrent threads will often run slower than an equivalent
single-threaded program, although it will often be better organized than the equivalent
single-thread version. A program that uses multiple threads running in parallel on
multiple processors will run much faster.

8.2.2. Thread Cooperation

There are typically two threading models supported by operating systems. cooperative
and preemptive.

127

Java Network Programming

The cooperative multithreading model: In a cooperative system, a thread retains control
of its processor until it decides to give it up (which might be never). The various threads
have to cooperate with each other or all but one of the threads will be "starved" (meaning,
never given a chance to run). Scheduling in most cooperative systems is done strictly by
priority level. When the current thread gives up control, the highest-priority waiting
thread gets control. (An exception to this rule is Windows 3.x, which uses a cooperative
model but doesn't have much of a scheduler. The window that has the focus gets control.)

The main advantage of cooperative multithreading is that it's very fast and has avery low
overhead. For example, a context swap -- atransfer of control from one thread to another
-- can be performed entirely by a user-mode subroutine library without entering the OS
kernel. (In NT, which is something of a worst-case, entering the kernel wastes 600
machine cycles. A user-mode context swap in a cooperative system does little more than
a C setjump/longjump call would do.) You can have thousands of threads in your
applications significantly impacting performance. Since you don't lose control
involuntarily in cooperative systems, you don't have to worry about synchronization
either. That is, you never have to worry about an atomic operation being interrupted. The
main disadvantage of the cooperative model is that it's very difficult to program
cooperative systems. Lengthy operations have to be manually divided into smaller
chunks, which often must interact in complex ways.

The preemptive multithreading model: The dternative to a cooperative model is a
preemptive one, where some sort of timer is used by the operating system itself to cause a
context swap. The interval between timer ticks is called a time dlice. Preemptive systems
are less efficient than cooperative ones because the thread management must be done by
the operating-system kernel, but they're easier to program (with the exception of
synchronization issues) and tend to be more reliable since starvation is less of a problem.
The most important advantage to preemptive systems is parallelism. Since cooperative
threads are scheduled by a user-level subroutine library, not by the OS, the best you can
get with a cooperative model is concurrency. To get paraldism, the OS must do the
scheduling. Of course, four threads running in parallel will run much faster than the same
four threads running concurrently.

Threaded environments like Java allow a thread to put locks on shared resources so that
while one thread is using data no other thread can touch that data. This is done with
synchronization. Synchronization should be used sparingly since the purpose of threading
is defeated if the entire system gets stopped waiting for alock to be released. The proper
choice of objects and methods to synchronize is one of the more difficult things to learn
about threaded programming.

8.2.3. Race Conditions

A race condition occurs when two threads try to access the same object at the same time,
and the behavior of the code changes depending on who wins. Figure 8.2 shows a single
(unsynchronized) object accessed simultaneously by multiple threads. A thread can be
preempted in fred() after modifying one field but before modifying the other. If another
thread comes aong at that point and calls any of the methods shown, the object will be
left in an unstable state, because the initial thread will eventually wake up and modify the
other field.

128

Java Network Programming

Thread 1 Thread 2

Some_class local:
Some_clasz=s local?:
wold fred()

Thread 3 Thread 4

i logal? modify()
logal.modify();

wold wilmaf()

woid pebble=s()

- e — — — e — = =

-

v

e

local? .Eudifsr{ E

S

¥

Figure 8.2. A race condition example

Usually, you think of objects sending messages to other objects. In multithreaded
environments, you must think about message handlers running on threads. Think: this
thread causes this object to send a message to that object. A race condition can occur
when two threads cause messages to be sent to the same object at the same time.

8.2.4. Deadlocks

Deadlock is a scenario where a thread is blocked forever, waiting for something to
happen that can't. The most common deadlock scenario occurs when two threads are both
waiting for each other to do something. The following code snippet makes what's going

on painfully obvious:

class Flintstone

{

int field_1;, private Qobject lock_1
int field_2; private Object |ock 2

= new int[1];
= new int[1];

public void fred(int value)
{ synchroni zed(lock_1)

{ synchroni zed(|ock_2)

field 1
field 2
}
}
}

0
0

public void barney(int value)

129

Java Network Programming

{ synchroni zed(|ock_2)
{ synchronized(|ock_1)

field 1
field 2
}
}
}
}

0;
0;

Now, imagine a scenario whereby one thread (call it A) calls fred(), passes through the
synchronization of lock 1, and is then preempted, allowing another thread (call it B) to
execute. B calls barney(), acquires lock 2, and tries to acquire lock 1, but can't because
A has it. B is now blocked, waiting for lock 1 to become available, so A wakes up and
tries to acquire lock_2 but can't because B hasit. A and B are now deadlocked. Neither
one can ever execute. (Note that lock 1 and lock 2 have to be one-element arrays rather
than simple ints, because only objects have monitors in Java, the argument to
synchronized must be an object. An array is a first-class object in Java; a primitive-type
such as int is not. Consequently, you can synchronize on it. Moreover, a one-element
array is efficient to bring into existence compared to a more elaborate object (like an
Integer) sinceit's both small and does not require a constructor call.

A and B are asimplified example, but the multiple-lock situation comes up frequently.
8.3. Multithreading Basics

8.3.1 Basic Concepts

All Java programs other than simple console-based applications are multithreaded,
whether you like it or not. A thread is a piece of code that can act independently of any
other code within an application. The piece of code is usually started by another piece of
code, but once it is started, it runs independently of the original caler, and controls its
own destiny, unless there is some outside interference. This is extremely useful in
network computing.

» Threads are a great boon to communications code because they combine the
convenience of synchronous programming with the efficiency of asynchronous
programming.

* In a sophisticated communication application, you might have one thread
managing communications, another thread handling screen drawing, another
collecting user input, and yet another thread dealing with file 1/0.

» Threads make it easier to create multiple simultaneous communications sessions,
you simply create a new thread each time you create a new session manager.

» Javathreads can potentially execute on separate processors, potentially resulting
in much faster execution.

* You can solve certain problems faster using concurrent threads.

130

Java Network Programming

Although threads can run independently, they also share resources when running. Two
classic problems in parallel processing, the race conditions and deadlocks, should aso be
considered when doing multithreading.

To use a thread to run an object, the class needs to be declared as a thread, by either
extending java.lang.Thread or by implementing java.lang.Runnable. Within both of these
thereisarun() method that isto be called by the Java VM when the thread is started.

Application code overwrites the run() method. Once this method exits, the thread exits.
Note that the run() method is called by the VM, not from the user code. A start() method
is used to start a thread's execution from user code, which signas the VM to start a
separate thread to run an instance of the class. Once the start() method exits, the run()
method is called by the VM and the thread starts to run. A stop() method is aso provided
to stop the execution of athread (the stop() method has been deprecated in Java 2. If you
want to stop the execution of a thread, you can use the interrupt() method to notify the
thread).

8.3.2. Simple Threading Examples

Our first example uses the java.lang.Thread. This is an abstract class that can be
extended and provides the core requirements for threading. Here are the steps to use this
mechanism:

* Writeanew classthat extends Thread overriding the run() method.
» Create an instance of that classin your Java code.
o Cadl the start method on that thread.

The example program, ThreadTest1.java is shown below:

/1 ThreadTest1l.java
public class ThreadTest1l extends Thread

{

private int thread_nunber;
public ThreadTest 1(int threadNunber)

t hread _nunber = t hreadNunber;
}

public void run()

{

Systemout.printin("running thread " + thread_nunber);
whi |l e(true)
{

try

Thr ead. sl eep(1000); // do the real work here
Systemout.println("thread " + thread_nunber + " is running");

catch(InterruptedException e)

/1 do nothing

}
}

public static void main(String[] args)

{

131

Java Network Programming

/1 create two instances of the class
ThreadTest1l testl = new ThreadTest 1(1)
ThreadTest 1 test2 = new ThreadTest 1(2);

/1 now run the threads
testl.start();
test2.start();

}
}

Note that you need to use Ctrl-C to kill the program. For a thread, the st art () method
prepares a thread to be run; the run() method actually performs the work of the thread;
and the st op() method halts the thread. The thread dies when the the run() method
terminates or when the thread's st op() method is invoked.

You never cal run() explicitly. It is caled automatically by the runtime as necessary
once you've caled st art () . There are a'so methods to supend and resume threads, to put
threads to sleep and wake them up, to yield control to other threads, and many more.

The second example uses the Runnable interface. Runnable requires you implement the
run() method. Here are the steps to use this mechanism:

* Writeanew class that implements Runnable, providing the run() method.
» Create an instance of the classin the Java code.

» Create an instance of the Thread, passing it the class that you have just created as
part of the constructor.

o Cadl the start() method on that thread.
Here is the example program, named ThreadTest2.java:

/| ThreadTest 2. j ava
public class ThreadTest2 inpl enents Runnabl e

{
private int thread_nunber = -1
public ThreadTest2(int threadNunber)
{

t hread_nunber = threadNunber;

public void run()

{
Systemout.println("running thread " + thread_nunber)
whi l e(true)
try
{
Thread. sl eep(1000); // do the real thing here
Systemout.printin("thread " + thread_number + " is running");
catch(InterruptedException e)
/1 do nothing
}
}
}
public static synchronized void check()
{

132

Java Network Programming

System out. println("Checked");

public static void main(String[] args)

{

/1 create two instances of the class
ThreadTest2 testl = new ThreadTest 2(1);
ThreadTest2 test2 = new ThreadTest 2(2);

Thread threadl = new Thread(testl);
Thread thread2 = new Thread(test?2);

/! now run the threads
threadl.start();
thread2.start();

}
}

The difference of the two mechanisms is, when you extend Thread, you are creating the
equivalent of a one-shot thread. That is, once you have caled start() and the thread
completes it execution, you cannot restart the thread from the beginning. On the other
hand, classes which implement the Runnable interface can be restarted as many times as
you need just by calling start() as required.

8.4. M ultithreaded Servers

8.4.1. Adding Threading to Servers

The HelloServer of Section 6.3.2 and the EchoServer of Section 6.3.3 could only handle
one client at a time. That wasn't so much of a problem for HelloServer because it had
only avery brief interaction with each client. However the EchoServer might hang on to
a connection indefinitely. In this case, it's better to make your server multi-threaded.
There should be aloop which continually accepts new connections. However, rather than
handling the connection directly the Socket should be passed to a Thread object that
handles the connection.

The following exampleis athreaded echo program.

i mport java.net.*;
i nport java.io.*;
public class ThreadedEchoServer extends Thread {
public final static int defaultPort = 2347,
Socket theConnecti on;
public static void main(String[] args) {
int port = defaultPort;

try {
port = Integer.parselnt(args[0]);

}
catch (Exception e) {

}
if (port <= 0 || port >= 65536) port = defaultPort;

try {
Server Socket ss = new Server Socket (port);
while (true) {
try {
Socket s = ss.accept();
Thr eadedEchoServer tes = new ThreadedEchoServer(s);

133

Java Network Programming

tes.start();

}
catch (1 CeException e) {

}
}

}
catch (1 Oexception e) {
Systemerr.println(e);

}

}
public ThreadedEchoServer (Socket s) {
t heConnection = s;

}
public void run() {

try {
Qut put Stream os = t heConnecti on. get Qut put St rean();

Input Streamis = theConnection. getl nputStreamn();
while (true) {

int n =is.read();

if (n==-1) break;

os.wite(n);

os. flush();
}

}
catch (1 Oexception e) {

}
}
}

Note that explicit yields are not required because al the different threads will tend to
block on callsto read() and accept().

8.4.2. Adding a Thread Pool to a Server

Multi-threading is a good thing but it's still not a perfect solution. For example, let's take
alook at the accept loop of the ThreadedEchoServer:

while (true) {

try {
Socket s = ss.accept();
Thr eadedEchoServer tes = new ThreadedEchoServer(s);

tes.start();

catch (1 CeException e) {
}

Every time you pass through this loop, a new thread gets created. Every time a
connection is finished the thread is disposed of. Spawning a new thread for each
connection takes a non-trivial amount of time, especially on a heavily loaded server. It
would be better not to spawn so many threads.

An aternative approach is to create a pool of threads when the server launches, store
incoming connections in a queue, and have the threads in the pool progressively remove
connections from the queue and process them. This is particularly simple since the
operating system does in fact store the incoming connections in a queue. The main

134

Java Network Programming

change you need to make to implement thisis to call accept() in the run() method rather
than in the main() method. The program below demonstrates this approach.

i mport java.net.*;

i mport java.io.*;

public class Pool EchoServer extends Thread {
public final static int defaultPort = 2347,
Server Socket theServer;
static int nunberOf Threads = 10;
public static void main(String[] args) {

int port = defaultPort;

try {
port = Integer.parselnt(args[0]);

catch (Exception e) {

}
if (port <= 0 || port >= 65536) port = defaultPort;

try {
Server Socket ss = new Server Socket (port);
for (int i = 0; i < nunberOf Threads; i++) {

Pool EchoSer ver pes = new Pool EchoServer (ss);
pes.start();

}

}
catch (1 Oexception e) {
Systemerr.printlin(e);

}

}
publ i ¢ Pool EchoSer ver (Server Socket ss) {
t heServer = ss;
}
public void run() {
while (true) {
try {
Socket s = theServer.accept();
Qut put St ream out = s. get Qut put Stream();
Input Streamin = s.getlnputStream();
while (true) {
int n=in.read();
if (n == -1) break;
out.wite(n);
out. flush();
} // end while
} /] end try
catch (1 Oexception e) {

}
} /1 end while
} // end run

}

In the program above the number of threads is set to ten. This can be adjusted for
performance reasons. How would you go about testing the performance of this program
relative to the one that spawns a new thread for each connection? How would you
determine the optimum number of threads to spawn?

135

Java Network Programming

8.5. An Interesting Parallel Client-Server Application

The example is a chat program consisting of three programs. ChatClient.java,
ChatServer.java and ChatHandler .java.

8.5.1. The Chat Client

The Chatclient.java implements the chat client. It takes the server’s machine name and
the port number as the input from the command line. Then it makes a connection to the
server and opens a window with two regions for displaying the chat contents and entering
the chat input line. When the user enters aline in the input region and types the Return,
the line is transmitted to the server and the server echoes everything it received from a
client to all clients. The client displays everything received from the server in its output
region.

i nport java.io.*;

i mport java.net.*;

i mport java.aw.*;

i nport java.aw.event.?*;

public class Chatdient inplements Runnable, WndowlLi stener, ActionListener {
protected String host;
protected int port;
protected Franme frane;
protected Text Area out put;
protected TextField input;

public ChatClient (String host, int port) ({
t his. host = host;
this.port = port;
franme = new Frane ("ChatCient [" + host + ':' + port + "]");
f rame. addW ndowLi st ener (this);
out put = new TextArea ();
out put . set Editabl e (false);
input = new TextField ();
i nput . addActi onLi stener (this);
frame.add ("Center", output);
frame. add ("South", input);
frame. pack ();

}

protected Dat al nput Stream dat al n;
protected DataCut put Stream dat aCut;
protected Thread |i stener;

public synchronized void start () throws | OException {

if (listener == null) {
Socket socket = new Socket (host, port);
try {

datal n = new Dat al nput Stream
(new Buf f er edl nput St ream (socket. getlnputStream ()));
dat aCut = new Dat aQut put St r eam
(new Buf f er edQut put St ream (socket. get Qut put Stream ()));
} catch (1 Oexception ex) {
socket.cl ose ();
t hr ow ex;
}
listener = new Thread (this);
listener.start ();

136

Java Network Programming

frame.setVisible (true);

}
}

public synchronized void stop () throws | OException {
frame.setVisible (fal se);
if (listener I'=null) {
listener.interrupt ();
listener = null;
dat aCut. close ();
}
}

public void run () {

try {
while (! Thread.interrupted ()) {

String line = dataln.readUTF ();
out put . append (line + "\n");

}
} catch (1 Oexception ex) {
handl el CException (ex);

}
}
protected synchroni zed voi d handl el OException (I OException ex) {
if (listener = null) {
out put . append (ex + "\n");
input.setVisible (false);
frame.validate ();
if (listener !'= Thread.currentThread ())
listener.interrupt ();
listener = null;
try {
dat aCut . cl ose ();
} catch (I OException ignored) {
}
}
}

public void w ndowOpened (W ndowEvent event) {
i nput . request Focus ();

}

public void wi ndowd osi ng (WndowEvent event) {

try {
stop ();
} catch (I OException ex) {

ex. printStackTrace ();
}
}

public void w ndowCl osed (W ndowEvent event) {}
public void w ndowl conified (WndowEvent event) {}
public void w ndowDei conified (W ndowkvent event) {}
public void w ndowActivated (W ndowEvent event) {}
public void w ndowDeactivated (W ndowEvent event) {}

public void actionPerformed (ActionEvent event) {
try {
input.selectAl ();
dataCut.writeUTF (event. getActi onCommand ());
dataCut.flush ();
} catch (I OException ex) {

137

Java Network Programming

handl el CException (ex);

}
}

public static void main (String[] args) throws ICException {
if ((args.length I'= 1) || (args[0].index»f (':") < 0))
throw new |11 egal Ar gunent Exceptlon (" Syntax Chat Cl i ent <host>: <port>");
int idx = args[0].indexOr ('
String host = args[O0]. substrlng (0, idx);
int port = Integer.parselnt (args[O].substring (idx + 1));
ChatClient client = new ChatCient (host, port);
client.start ();

8.5.2. The Chat Server

The chat server isimplemented by two Java programs. The ChatServer.java contains the
main class ChatServer that accepts connections from clients and assigns them to new
connection handler objects.

i mport java.io.*;
i mport java.net.*;
import java.util.*

public class ChatServer {
public static void main (String args[]) throws | OException {

if (args.length = 1)
throw new ||| egal Argunment Exception ("Syntax: Chat Server <port>");

int port = Integer.parselnt (args[0]);

Server Socket server = new Server Socket (port);

while (true) {
Socket client = server.accept ();
Systemout.println ("Accepted from" + client.getlnetAddress ());
Chat Handl er handl er = new Chat Handl er (client);
handl er.start ();

The other program, ChatHandler.java, implements the Chathandler class to listen for
messages from a client and broadcast them to al connected clients. A list of current
handlers is maintained within the ChatHandler class. The broadcast() method of the class
usesthislist to transmit amessage to al connected clients.

i nport java.io.*;

i mport java.net.*;
i mport java.util.*

public class ChatHandl er inplenents Runnable {
protected Socket socket;

publ i c Chat Handl er (Socket socket) {
t hi s. socket = socket;

}

prot ect ed Datal nput Stream dat al n;

138

Java Network Programming

prot ect ed Dat aCut put Stream dat aQut ;
protected Thread |istener;

public synchroni zed void start () {
if (listener == null) {
try {
datal n = new Dat al nput Stream
(new Buf f eredl nput St ream (socket. getlnputStream()));
dat aCut = new Dat aCut put Stream
(new Buf f er edQut put St r eam (socket . get Qut put Stream ()));
|istener = new Thread (this);
|istener.start ();
} catch (I Oexception ignored) {
}

}
}
public synchroni zed void stop () {
if (listener = null) {
try {
if (listener !'= Thread.currentThread ())
listener.interrupt ();
listener = null;
dat aQut. cl ose ();
} catch (I Oexception ignored) {
}
}
}

protected static Vector handlers = new Vector ();

public void run () {
try {
handl er s. addEl ement (this);
while (! Thread.interrupted ()) {
String message = dataln.readUTF ();
br oadcast (nessage);

}
} catch (EOFException ignored) {
} catch (I CException ex) {

if (listener == Thread. currentThread ())
ex. printStackTrace ();
} finally {

handl ers. renpveEl enent (this);

}
stop ();
}

protected void broadcast (String nessage) {
synchroni zed (handl ers) {
Enunerati on enum = handl ers. el enents ();
whil e (enum hasMoreEl enents ()) {
Chat Handl er handl er = (Chat Handl er) enum next El enent ();
try {
handl er. dat aOut . wi t eUTF (nessage);
handl er. dat aQut . fl ush ();
} catch (1 Oexception ex) {
handl er.stop ();

139

Java Network Programming

Students are required to compile the three programs and test run the server on one
machine, the client instances on at least two machines. If possible, a number of students
can form a group to test run the chat program (one runs the server and the client is run on
multiple sites).

140

Java Network Programming

9. Distributed Database Applications using Java

9.1. Study Points

» Understand the principles and architectures of Web-based databases.
» Understand the basic principles of JDBC.
» Beableto use JDBC to develop simple database applications.

* Be able to combine the JDBC and Java networking facilities to build smple Web-
based database applications.

Reference: (1). [FAR] Chapter 7. (2). [Java2H] Chapter 11. (3). [Java2U]. Chapters 43,
44, 45, 46. (4). Mingjun Lan, Shui Yu, and Wanlei Zhou, “Current Technologies and
Devel opment of Web-Based Databases: A Survey”, Technical Report, Deakin University,
TR C01/12, 2001.

9.2. Web-Based Database

9.2.1. Why Web-Based Database?

Java network programming opens the possibility of building Web-based distributed
databases. A Web-based distributed database is a key component of many Internet-related
applications, such as applications in electronic commerce, information retrieval, and
multimedia.

The current wisdom on databases is that information stored in databases is owned by the
database management systems (DBMS) that manage the databases. The DBMS is a
closed system in the sense that all operations on the data managed by the DBMS will be
stored back to the database. A further development on distributed databases and
heterogeneous databases alows information to be stored in different databases using
various formats and to be shared among participating databases. However, a distributed
heterogeneous database system is still a closed system that is managed by a distributed
database management system (DDBMYS).

The Web-based database approach represents a deviation from this traditional mode of
thinking. It allows data to be represented in objects (consisting of data and methods that
manipulate the data) and the access of these objects are open to anyone with the correct
access rights. Information stored in a Web-based database is independent of any
particular software (such as the DBMSs in the traditional database approach). Access to
the Web-based database can be easily integrated into any user interface, such as a
conventional WWW browser or a particular application program. Web-based databases
have a great potentia in electronic commerce, information retrieval and multimedia
applications.

Web-based databases possess of a number of advantages:

* Maintenance and Updating. It separates content (database) from presentation (an
HTML page). It means that the owner of the site is able to update the content of their
site without constantly having to go through their webmaster or designer. Creating an

141

Java Network Programming

Web template once and merging it with new content (database) is a more reliable way
than publishing information with a consistent layout.

» Reusability and modularity. By designing additiona templates, one can easily reuse
content on another Web site or modify it to fit a new design. For users, databases
make site searches more accurate: they can be limited to certain fields, returning
better-quality hits than full-text searches.

e The ahility to distribute data update. With the right interface, even a novice user can
go into the database to update information; the Web publishing system can then send
out the changesimmediately.

e Security. Databases help ensure that contents are accessed by authorized users.

9.2.2. The Two-tier Architecture of Web-based Databases

There are different WBDB frameworks according to various technologies and
requirements. Generally speaking, the WBDB can be considered as a single huge
database as well as multiple data sources. There are alot of technologies that can be used
for WBDB. Languages for web applications and web servers are Java, PHP, Perl, HTML,
DHTML, XML, SQL and so forth. Access technologies contain CGl, JavaScript, Servlet,
JDBC, and ODBC. Common enterprise databases include Oracle, Sysbase, Informix,
DB2,mSQL, mySQL, SQL-Server, and Butler-SQL. We generaly classify WBDB
architectures into the following types Two-tier Architecture of WBDB, Three-tier
Architecture of WBDB, and Hybrid Architectures of WBDB.

The minimal spatia configuration of a WBDB is the two-tier architecture. The basic
framework is shown in Figure 9.1.

- Cli . Server
a: Client request Y

_ ——
User Interface Application
result I ogic R

Figure 9.1. Two-tier architecture of Web-based databases

9.2.3. The Three-tier Architecture of Web-based Databases

The three-tier architecture is a popular model, which contains generally the Client (we
caled it a), Application Server (we caled it), and Data Server (we called it y), see
Figure 9.2. A full-fledged WBDB requires these three essentia components although
they can represent various types of technologies. In the following, we discuss some
current three-tier architectures of WBDB.

142

Java Network Programming

: Application Server : Data Server
pp y
a: Client
Regques
Browsers, * > Application
User Interface logic
Result

Figure 9.2. Three-tier architecture of Web-based databases

In the three-tier model of a database gateway, the three components are Client API
Library, Server API Library, and Glue. The a component is the Client APl Library,
which consists of client-sde APIs. They determine the format and meaning of the
requests that the client applications may issue. Glue is the 3 component, which owns
trandation and mapping mechanisms. It transforms the client APl to the DBMS
(Database Management System) server’s API, and vice versa for the data returned to the
Clients. Server API Library on the database server-side is the y component. It manages
the database service available to the clients. The services change in terms of the
authentication from the DBMS.

The TP (transaction-processing) monitor model is aso akind of three-tier architecture. In
this context, Client Application (o component) consists of the user-interface functions,
such as screen logic, screen handling, input handling, and some validation functions.
Application Servers (B components) provides all of the details of application services.
Resource managers (y component) can provide all of lower-level services, such as
communication between the database and the application services, see the dashed
diagramin Figure 2.

The extended client/server model is atypical three-tier architecture. In such a model, the
client Web browser (a components) sends the request to the Web server (3 components).
The Web server transfers the request to a database server (y components). After the
database server processes the query, the results are retrieved to the client Web browser by
the reverse pathway. In the transition, the web server can handle the results from the
database.

In the Multi-distributed databases (MDBS) scenario, the Web server () requests the
MDBS (y) to retrieve the required data. The y server does this by issuing a global-level
SQL query to the MDBS. The MDBS then decomposes the whole query and generates
the local queries according to various features of engaging database servers. Then these
local queries can beissued to corresponding database servers that may be managed by the
DBMS servers. But these DBMS servers can be accessed through all sorts of database
access technologies. The MDBS integrates the local results it receives from all the
database servers and finally presents a global result to the web server. In this case, the
MDBS handles al the operations including data locating, interrelating, and integrating.
The web server just sends the requests from clients, which is different from the typical
client/server model.

143

Java Network Programming

All the technologies can be used in the three-tier architecture according to different user
requirements. The three-tier or even n-tier models are essential models to structure a
WBDB.

9.2.4. The Hybrid Architecture of Web-based Databases

There are severa ways combining various technologies into Web or database to enhance
the performances of WBDB. A general architecture is to apply agent-based computing
concepts in building WBDBs, see Figure 9.3. Strictedly speaking, however, it also is a
three-tier architecture

a: Client B: Application Server y: Data Server
regquests
Browsers,
User Interface It
4& Web Server

L

‘_/{’ Agent

¢: Mid-process

Figure 9.3. Hybrid (agent-based) architecture of Web-based databases

In an agent-based scenario, the clients (a) send either data or data and programs over the
Web server that activates the agent (¢). The agent then processes the request data using
its own programs or using the received programs. After the completion of the preliminary
processing, the agent will send the data/program/medium result to the application server
(B) for further processing. Then the web server communicates with the database and the
database server (y) finishes the manipulation to the databases and transfers the results to
the Web server. The web server will return the results back to the client directly or viathe

agent.
9.3. An Overview of Java Database Connectivity (JDBC)

9.3.1. What is JDBC

The JDBC package is a set of Java classes that can be used by applications to make
database cals. It specifies the interfaces between Java and databases (based on SQL2).
JavaSoft (the group that defined JDBC) only specifies the interfaces. All implementation
of JDBC drivers is done by third part companies with special expertise. A change of a
driver will not change the program. The mgjor advantages of using JDBC are the cross-
platform independence and the possibility of delivering database functionality using Java
appl ets through the Internet.

144

Java Network Programming

JDBC's classes are contained in the “java.sgl” package. It includes the following major

classes:

e DriverManger: The Driver Manager object is used to facilitate the use of
multiple database drivers in a single application. Each JDBC driver can be used to
connect to a different data source.

» Connection: After a JDBC driver has been registered with the Dri ver Manager , a
data source, user ID, password, or other pertinent information can be specified to
create a connection to a database. this Connect i on object is used in later cals to
specify against which database the call should be placed. JDBC supports having
multiple Connect i on objects open at any given time.

e Satement: The St at enment object mimics the SQL statement that the application
wants to apply against a database.

» After acdl ismade by a St at enent object, the results of the query are put into a
Resul t Set object. This object can then be traversed to retrieve multiple rows as
well as multiple columns.

* ResultsetMetaData: The Resul t Set Met aDat a object can be used to inquery
about the contents of aResul t Set object.

» DatabaseMetaData: The DatabaseMetaData object can be used to query the support
options for a given database.

e SQLException: This exception is used to capture most problems that are returned
from database systems. In addition, the JDBC offers a SQLWAr ni ng class that
returns information that is not as severe asthe SQLExcept i on class.

9.3.2. Using JDBC

A JDBC program initially invokes the DriverManager class's getConnection() method to
establish a connection to the database. Once the connection is established, the program
cals either the createSatement(), prepareStatement(), or prepareCall() method of the
Connection object and prepares for executing the SQL statements. SQL statements can be
executed by invoking the Statement object, or via the PreparedStatement object or the
CallableStatement object.

Next, the program either calls the executeQuery(), executeUpdate(), or the execute()
method of the Statement, PreparedSatement, or CallableSatement object. The
executeQuery() method is used when only one ResultSet is needed, and the execute()
method is used when more than one ResultSet is returned. The executeUpdate() method is
used if no ResultSet is needed and the SQL statement contains an UPDATE, | NSERT, or
DELETE. The next() method of the ResultSet object can be used to process multiple rows
of data.

9.4. Developing JDBC Applications: Using the Access Database

9.4.1. Prepare the Database

The first step of developing a web-based database using JDBC is to prepare the database
for JDBC connection. We use an Access database as an example. First, a blank database,

145

Java Network Programming

named dbtest.mdb, is created. Second, the following steps are used to prepare the

database for JDBC access.

* From the Sart menu select the Settings

» Click the Control Pandl, then the ODBC Data Source (32bit)

e Click System DSN, then Add

» Select Microsoft Database Driver (*.mdb)

e Type in data source name and use “Select” to find the database “dbtest.mdb”; Use
“Options’ to set the username and password.

9.4.2. Create the Database Tables

Assume that the database contains three tabless CUSTOMER, PRODUCT, and
TRANSACTI ONS.

The following Java program “CreateCustomer.java’ creates the customer table with four
columns (C_NAME, C ID, C ADDR, and C_PHONE):

i mport java.sql.*;
public class CreateCustomer {
public static void main(String args[]) {
String url = "jdbc:odbc: dbtest";
Connection con;
String createString;
createString = "create table CUSTOVER " +
"(C_NAME varchar (30), " +
"CIDint, " +
"C_ADDR varchar (50), " +
"C_PHONE varchar (12))";
Statenment stnt;
try {
Cl ass. for Name(" sun. j dbc. odbc. JdbcGdbcDri ver") . newl nst ance() ;
} catch(Exception e) {
Systemerr. print("C assNot FoundException: ");
Systemerr.println(e.get Message());
}

try {
con = DriverManager. get Connection(url, "adm n", "adm n");

stnt = con.createStatenent();

stnt. execut eUpdat e(createString);

stnt.close();

con. cl ose();
} catch(SQ.Exception ex) {

Systemerr.println("SQException: " + ex.getMessage());
}

}
Now, you can compile the program and run it. After that, check the database to seeif the
tableis created.

The creation of the PRODUCT table (with five columns of P_NAME, P_DESC, P_CODE,
P_UNIT, and P_STOCK) is similar. The Java program “CreateProduct.java” is listed
below:

146

Java Network Programming

i nport java.sql.*;
public class CreateProduct {
public static void main(String args[]) {
String url = "jdbc: odbc: dbtest”;
Connection con;
String createString;
createString = "create table PRODUCT " +
"(P_NAME varchar (20), " +
"P_DESC varchar (40), " +
"P_CCDE varchar(8), " +
"P_UNIT_PRICE float, " +
"P_STOCK int)";
Stat ement stnt;
try {
Cl ass. for Name(" sun. j dbc. odbc. JdbcGdbcDri ver") . newl nst ance() ;
} catch(Exception e) {
Systemerr.print("C assNot FoundException: ");
Systemerr. println(e.getMessage());
}

try {
con = DriverManager. get Connection(url, "adm n", "adm n");

stnt = con.createStatenent();

stnt. execut eUpdat e(createString);

stnt.close();

con. cl ose();
} catch(SQ.Exception ex) {

Systemerr.println("SQException: " + ex.getMessage());
}

You can also compile the program, run it, and check the database to see if the table is
created.

The creation of the TRANSACTI ON table (with columnof T_ID, CID, P_CODE, T_NUM
T_TOTAL_PRICE, and T_DAATE) is aso similar. The following Java program
“CreateTransaction.java” completes such atask:

i nport java.sql.*;
public class CreateTransaction {
public static void main(String args[]) {

String url = "jdbc: odbc: dbtest™";

Connection con;

String createString;

createString = "create tabl e TRANSACTION " +
"(T_IDint, " +
"CIDint, " +
"P_CODE varchar(8), " +
"T_NUMint, " +
"T_TOTAL_PRICE float, " +
"T_DATE date)";

Statenent stnt;

try {

Cl ass. for Name(" sun. j dbc. odbc. JdbcGdbcDri ver") . newl nst ance() ;

} catch(Exception e) {
Systemerr. print("C assNot FoundException: ");
Systemerr.println(e.get Message());

}

try {

147

Java Network Programming

con = DriverManager. get Connection(url, "adm n", "adm n");
stnt = con.createStatenment();

stnt. execut eUpdat e(createString);

stnt.close();

con. cl ose();
} catch(SQLException ex) {

Systemerr.println("SQException: " + ex.getMessage());
}

Y ou should aso compile the program, run it, and check the database to see if the tableis
created.

9.4.3. Populate the Tables

You can populate the three tables using the following programs, named
InsertCustomer .java, InsertProduct.java, and InsertTransaction.java, respectively:

/I * InsertCustomer java’
i nport java.sqgl.*;
public class InsertCustoner {
public static void nmain(String args[]) {
String url = "jdbc:odbc: dbtest”;
Connection con;
Statenment stnt;
String query = "select * from CUSTOVER';

try {
Cl ass. f or Name("sun. j dbc. odbc. JdbcOdbcDri ver");

} catch(java.l ang. d assNot FoundException e) {
Systemerr. print("d assNot FoundException: ");
Systemerr.println(e.getMessage());

}

try {
con = DriverManager. get Connection(url, "admn", "admn");
stnt = con.createStatenent();

stnt. executeUpdate("insert into CUSTOVER " +

"val ues('John Smith', 100, '123 King St.', '03-9123 4567')");
stnt. executeUpdate("insert into CUSTOMER " +

"val ues(' Al ex Lee', 101, '234 Queen St.', '03-9234 5678')");
stnt. executeUpdate("insert into CUSTOVER " +

"val ues(' Anne Wong', 102, '345 Yarra Ave.', '03-9345 6789')");
stnt. executeUpdate("insert into CUSTOMER " +

"val ues(' Tanya Foo', 103, '456 Irving Rd.', '03-9456 7890')");

Resul t Set rs = stnt.executeQery(query);
Systemout.println("C NAME C ID C ADDR C PHONE");
while (rs.next()) {

String s = rs.getString("C_NAME");

int i =rs.getlnt("C.ID");

String s1 = rs.getString("C_ADDR');

String s2 = rs.getString("C_PHONE");

Systemout.printin(s +" " + i +
"M+ s+ " "+ 82);

stnt.close();

con. cl ose();
} catch(SQ.Exception ex) {

Systemerr.println("SQException: " + ex.getMessage());
}

148

Java Network Programming

I * InsertProduct.java’:
i nport java.sqgl.*;
public class InsertProduct {
public static void nain(String args[]) {
String url = "jdbc: odbc: dbtest”;
Connecti on con;
Statenment stnt;
String query = "select * from PRODUCT";

try {
Cl ass. for Name("sun. j dbc. odbc. JdbcGdbcDri ver");

} catch(java.l ang. O assNot FoundException e) {
Systemerr. print("d assNot FoundException: ");
Systemerr. println(e.get Message());

}

try {
con = DriverManager. get Connection(url, "admn", "admin");
stnt = con.createStatenment();

stnt. executeUpdate("insert into PRODUCT " +
"values('TV', 'Philip, 68cm flat screen', 'T0010', 1200. 00,

10)");
stnt. executeUpdate("insert into PRODUCT " +
"val ues('VCR, 'Sony, Md-Drive', 'V100', 500.00, 15)");
stnt. executeUpdate("insert into PRODUCT " +
"val ues(' TV', 'Tohisba, 34cm renote control', 'T0012', 300.00,
20)");

stnt. executeUpdate("insert into PRODUCT " +
"values('PC, 'Dell, 256M RAM 10GHD, 17\" nonitor', 'P0012',
2400. 00, 12)");

Resul t Set rs = stnt.executeQery(query);
Systemout.println("P_NAME P_DESC P_CODE P_UNIT_PRICE

P_STOCK") ;
while (rs.next()) {
String s = rs.getString("P_NAME");
String s1 = rs.getString("P_DESC');
String s2 = rs.getString("P_CODE");
float f = rs.getFloat("P_UNIT_PRICE");
int i = rs.getlnt("P_STOCK");
Systemout.printin(s +" " + sl +" " + s2 +
" "+ f o+ " "+i);
stnt.close();
con. cl ose();
} catch(SQ.Exception ex) {
Systemerr.println("SQLException: " + ex.getMessage());
}
}
}

I “InsertTransaction.java’:
i mport java.sql.*;
public class InsertTransaction {
public static void main(String args[]) {

String url = "jdbc: odbc: dbtest”;

Connection con;

Statenent stnt;

String query = "select * from TRANSACTI ON';

try {

Cl ass. f or Name("sun. j dbc. odbc. JdbcGdbcDri ver");

} catch(java.l ang. d assNot FoundException e) {
Systemerr. print("d assNot FoundException: ");
Systemerr.println(e.get Message());

}

try {
con = DriverManager. get Connection(url, "admn", "admn");

stnt = con.createStatenment();

149

Java Network Programming

stnt. executeUpdate("insert into TRANSACTION " +

"val ues(500, 100, 'T0010', 1, 1200.00, #1/8/2000#)");
stnt. execut eUpdate("insert into TRANSACTION " +

"val ues(501, 101, 'V100', 2, 1000.00, #2/20/2000#)");

Resul t Set rs = stnt.executeQery(query);
Systemout.printIn("T_ID CID P_CODE T_NUM T_TOTAL_PRI CE

T_DATE");
while (rs.next()) {
int i =rs.getlnt("T_ID");
int il =rs.getlnt("C.ID");
String s = rs.getString("P_CODE");
int i2 = rs.getlnt("T_NUM);
float f = rs.getFloat("T_TOTAL_PRI CE");
Date d = rs.getDate("T_DATE");
Systemout.printin(i +" " +il+" " +5s +
ot +i2+" "+ f +" "+ d);
stnt.close();
con. cl ose();
} catch(SQ.Exception ex) {
Systemerr.println("SQException: " + ex.getMessage());
}
}
}

Y ou can compile the programs, run them, and check the database to see if the tables are
popul ated.

9.4.4. Print Columns of Tables

The following Java program “PrintColumnsjava” prints all contents of the PRODUCT
table:

i nport java.sql.*;
class PrintColums {
public static void main(String args[]) {
String url = "jdbc: odbc: dbtest”;
Connection con;
String query = "select * from CUSTOVER';
Statenment stnt;
try {
d ass. for Name("sun. j dbc. odbc. JdbcOdbcDri ver");
} catch(java.l ang. G assNot FoundExcepti on e) {
Systemerr. print("C assNot FoundException: ");
Systemerr. println(e.getMessage());

}

try {
con = DriverManager. get Connection(url, "adm n", "admn");

stnt = con.createStatement();

Resul tSet rs = stnt.executeQery(query);

Resul t Set Met aData rsnd = rs. get Met aDat a() ;

Pri nt Col utmTypes. pri nt Col Types(rsnd);

Systemout.printin("");

i nt nunber O Col utms = rsnd. get Col umCount () ;

for (int i = 1; i <= nunmberf Col ums; i++) {
if (i >1) Systemout.print(", ");
String columNanme = rsnd. get Col umNane(i);
System out . print (col uimNane) ;

}

Systemout.println("");

while (rs.next()) {

150

Java Network Programming

for (int i = 1; i <= nunmberOf Col ums; i++) {
if (i >1) Systemout.print(", ");
String columValue = rs.getString(i);
System out. print (col umVal ue) ;

}

Systemout.println("");

stnt.close();
con. cl ose();

} catch(SQLException ex) {
Systemerr.print("SQ.Exception: ");
Systemerr. println(ex.get Message());

}

The program uses a Java class called PrintColumnTypes, to identify the types used in
Database and JDBC. The program (called PrintColumnTypes.java) is shown below:

i mport java.sql.*;
public class PrintColumTypes {
public static void printCol Types(ResultSet MetaData rsnd)
throws SQ.Exception {

int colums = rsmd. get Col umCount () ;
for (int i = 1; i <= colums; i++) {
int jdbcType = rsnd. get Col umType(i);
String name = rsmd. get Col umTypeNane(i);
Systemout.print("Colum " + i + " is JDBC type " +
j dbcType);
Systemout.println(", which the DBMS calls " + nane);

Y ou should compile the program, run it, and check if the table is printed properly.

To print the columns of the PRODUCT and the TRANSACTION tables, only one line of
the above program needs to be changed:

String query = "select * from CUSTOVER';

Just change the “CUSTOMER” into PRODUCT or TRANSACTION will print the
contents of these tables, respetively.

9.4.5. Execute a Select Statement (one table)

The following Java program “SelectSatement.java’ executes the following SQL

Statement:
sel ect P_DESC, P_STOCK
f rom PRODUCT
where P_NAME like 'TV ;

You can execute other SQL statements by simply changing the correspond statement in
the program.

151

Java Network Programming

i nport java.sql.*;
public class Sel ectStatement {
public static void main(String args[]) {
String url = "jdbc: odbc: dbtest”;
Connection con;
String query = "select P_DESC, P_STOCK " +
"from PRODUCT " +
"where P_NAME |ike 'TV' ";
Statenment stnt;

try {

C ass. for Name("sun. j dbc. odbc. JdbcOdbcDri ver");

} catch(java.l ang. O assNot FoundExcepti on e) {
Systemerr. print("C assNot FoundExcepti on:
Systemerr.println(e.get Message());

}

try {

con = DriverManager. get Connection(url, "adm n",

stnt = con.createStatenent();

Resul t Set rs = stnt.executeQery(query);
Resul t Set MetaData rsnd = rs. get Met abDat a() ;

i nt nunber O Col utms = rsnd. get Col umCount () ;

int rowCount = 1;
while (rs.next()) {

Systemout.println("Row " + rowCount + "
for (int i =1; i <= nunber O Col ums;
Systemout. print(" Col um "
Systemout.println(rs.getString(i));

}

Systemout.println("");
ronCount ++;

}

stnt.close();

con. cl ose();

} catch(SQLException ex) {

Systemerr. print("SQ.Exception: ");
Systemerr. println(ex.get Message());

}

"admin");

")

You should compile the program, run it, and check the database to see if the result is

selected properly.

9.5. Developing JDBC Applications: Using the Oracle Database

9.5.1. Using the Oracle Database from Windows OS.
Use the following steps to prepare the use of the Oracle database:

» Install the Oracle JDBC driver by unzipping the or acl e. zi p file (can be found in the
unit web page) and store it into the correct directory (e.g. your working directory) or

your class directory.

* Usetheright URL and the database. The URL for our School’s Oracle database is:

final String url = "jdbc:oracle:thin: @urin.cmdeakin. edu. au: 1521: cnodb";

» Usetheright driver class:

152

Java Network Programming

final String driverC ass="oracle.jdbc.driver.OacleDriver";

e Use the right username/password (please consult your tutor or lecturer for the
username and password).

9.5.2. Create, Populate and Update the CUSTOMER TableThe following program
creates the CUSTOMER table. To use it for your own program, you need to change the
username/password from “scott/tiger” into your own. Y ou also need to change the URL if
you want to use another Oracle database.

i nport java.sql.*;
public class CreateCustonerl {
public static void main(String args[]) {
final String url = "jdbc:oracle:thin:@urin.cmdeakin. edu. au: 1521: cnodb”;
final String driverC ass="oracle.jdbc.driver.OacleDriver";
Connection con;
String createString;
createString = "create table CUSTOVER " +
"(C_NAME varchar (20), " +
"CIDint, " +
"C_ADDR varchar (20), " +
"C_PHONE varchar (12))";
Stat ement stnt;
try {
Cl ass. forName(driverC ass).new nstance();
} catch(Exception e) {
Systemerr. print("C assNot FoundException: ");
Systemerr.println(e.get Message());
}
try {
con = DriverManager. get Connection(url, "scott", "tiger");
stnt = con.createStatenent();
stnt. execut eUpdat e(createString);
stnt.close();
con. cl ose();
} catch(SQ.Exception ex) {
Systemerr.println("SQException: " + ex.getMessage());
}

}
}
The following program populates the CUSTOMER table:

i nport java.sql.*;
public class InsertCustonerl {
public static void main(String args[]) {
final String url =
"jdbc:oracle:thin:@urin.cm deaki n. edu. au: 1521: cnodb”;
final String driverC ass="oracle.jdbc.driver.OacleDriver";
Connection con;
Statenment stnt;
String query = "select * from CUSTOVER';
try {
Cl ass. forNane(driverC ass).new nstance();
} catch(Exception e) {
Systemerr. print("C assNot FoundException: ");
Systemerr. println(e.getMessage());
}
try {
con = DriverManager. get Connection(url, "scott", "tiger");

153

Java Network Programming

stnt = con.createStatenent();
stnt. execut eUpdate("insert into CUSTOVER " +

"val ues('John Smith', 100, '123 King St.', '03-9123 4567')");
stnt. execut eUpdate("insert into CUSTOVER " +

"val ues(' Al ex Lee', 101, '234 Queen St.', '03-9234 5678')");
stnt. execut eUpdate("insert into CUSTOVER " +

"val ues(' Anne Wong', 102, '345 Yarra Ave.', '03-9345 6789')");
stnt. execut eUpdate("insert into CUSTOVER " +

"val ues(' Tanya Foo', 103, '456 Irving Rd.', '03-9456 7890')");

Resul t Set rs = stnt.executeQuery(query);
Systemout.println("C NAME C ID C ADDR C_PHONE");
while (rs.next()) {
String s = rs.getString("C_NAME");
int i =rs.getlnt("C.ID");
String s1 = rs.getString("C_ADDR");
String s2 = rs.getString("C_PHONE");
Systemout.println(s + " " + i +
"+ sl +" "+ 82);
}
stnt.close();
con. cl ose();
} catch(SQLException ex) {
Systemerr.println("SQException: " + ex.getMessage());
}

}
}
The following program updates the CUSTOMER table:
i mport java.sql.*;

public class Updat eCustoner {
public static void main(String args[]) {
final String url = "jdbc:oracle:thin:@urin.cm deakin. edu. au: 1521: cnodb";
final String driverC ass="oracle.jdbc.driver.OacleDriver";
Connection con;
String createString;
createString = "update CUSTOVER set C ADDR = '99 Fred St.' where
C_| b=100";
Statenment stnt;
try {
Cl ass. forNanme(driverC ass).new nstance();
} catch(Exception e) {
Systemerr. print("C assNot FoundException: ");
Systemerr.println(e.get Message());
}

try {
con = DriverManager. get Connection(url,"scott","tiger");

stnt = con.createStatenent();

stnt. execut eUpdat e(createString);

stnt.close();

con. cl ose();
} catch(SQLException ex) {

Systemerr.println("SQException: " + ex.getMessage());
}

}
}
Note that the above programs are very similar to the program in Section 9.4. The only

real differenceisthe URL.

154

Java Network Programming

9.6. A JDBC Application Example

This example has a database that stores data, a server that manages the access of the
database, and a client that interfaces with users. The client uses a Java applet to access the
server and the server uses JDBC to access the database.

9.6.1. Prepare the Access Database and the HTML File

We use the Access database, “dbtest.mdb”, created in the previous section. It includes
three tables: CUSTOMER, PRODUCT, and TRANSACTION.

The first step is to prepare the following HTML file, named Applet.html, to use the
applet:

<HTM.>
<titl e>Dat abase Qperations</title>

<appl et code="Cient Appl et. cl ass”
wi dt h=600 hei ght =350>

</ appl et >

</ HTM.>

9.6.2. Prepare the Java Applet Programs

Create the main applet program, “ClientApplet.java’. This program implements the user
interface. Y ou should change the IP address in the program to a proper | P address.

i mport java.aw.*;
i mport java.aw.event.?*;

i mport java.appl et. Appl et;
i nport java.io.*;

public class CientApplet extends Applet {
private static final String host= "192.168.0.1";
Text Area ta;
Cl i ent Comm cc;
ClientCormExit cce;
d i ent CoomBSQ. ccs;
Text Fi el d sqgl command;

public void init () {
Panel pl = new Panel (new BorderLayout (10, 10));
Button plbl = new Button ("Resul sts Returned");
pl. add (plbl, BorderLayout.NORTH);
ta = new TextArea ();
ta.set Edi tabl e(fal se);
pl.add (ta, BorderLayout.CENTER);

sql command = new TextField ("", 50);
pl. add (sql command, BorderLayout. SOUTH);
add (pl);

Panel p2 = new Panel (new FlowLayout());
Button p2bCus = new Button ("All Custoners");
p2. add (p2bCus);
p2bCus. addActi onLi st ener (new ActionLi stener() {
public void actionPerformed (ActionEvent e) {
Byt eArrayQut put St ream bao = new Byt eArrayCQut put Streamn() ;

155

Java Network Programming

cc = new dientComi{host, 0, 1, bao);
ta.set Text (bao.toString()+"Returned by the <Al Customer> request”);
}
)

Button p2bPro = new Button ("All Products");
p2. add (p2bPro);
p2bPro. addActi onLi stener (new ActionListener() {
public void actionPerfornmed (Acti onEvent e) {
Byt eAr r ayQut put St r eam bao = new Byt eArrayCQut put Strean();
cc = new O ientCom{host, 0, 2, bao);
ta.set Text (bao.toString()+"Returned by the <Al Product> request");
}
)i

Button p2bTra = new Button ("All Transactions");
p2.add (p2bTra);
p2bTra. addActi onLi st ener (new ActionListener() {
public void actionPerfornmed (Acti onEvent e) {
Byt eArrayQut put St r eam bao = new Byt eArrayCQut put Strean();
cc = new O ientCom{host, 0, 3, bao);
ta.set Text (bao.toString()+"Returned by the <Al Transaction>
request");
}
)i

Button p2bSQ. = new Button ("SQ. Conmand");
p2.add (p2bSQ);
p2bSQ.. addActi onLi st ener (new ActionLi stener() {
public void actionPerfornmed (Acti onEvent e) {
Byt eArrayQut put St r eam bao = new Byt eArrayCQut put Strean();
ccs = new Cient CoomBQ.(host, 0, 4, sgl conmand. get Text (), bao);
ta.set Text (bao.toString()+"Returned by the <SQ Conmand> request");
}
)

Button p2bExit = new Button ("ShutDown Server");
p2.add (p2bExit);
p2bExi t . addAct i onLi st ener (new ActionListener() {
public void actionPerfornmed (ActionEvent e) {
Byt eArrayQut put St ream bao = new Byt eArrayCQut put Streamn() ;
cce = new Cient ConmExit(host, 0, bao);
ta.set Text (bao.toString()+"Returned by the <Shut Down Server>
request");
/] System exit(0);

add (p2);

Create the Java program that implements the “ClientComm” class used in the applet:
“ClientComm.java”. This program deals with the mgjor communication work between
the applet and the server.

i nport java.io.*;
i mport java.net.*;

public class CientConmm {
public static final int DEFAULT_PORT = 6789;

156

Java Network Programming

private String host = ;
private int port = O;

private QutputStreamos = null;
bool ean DEBUG = true;

public CientComm (String h, int p, int choice, QutputStreamo) {
host h;
port = ((p == 0) ? DEFAULT_PORT : p);
0s = 0;
Socket s = nul|;
PrintWiter out = new PrintWiter (os, true);
if (DEBUG ({
System out. println("Applet about to create a socket on "
+ host + " at port " + port);

o

}

try {
/1 create a socket to conmunicate to the specified host and port

s = new Socket (host, port);
/Il create streans for reading and witing
Buf f eredReader sin = new Buf f eredReader (new
| nput St r eanReader (s. getl nput Strean()));
PrintStream sout = new PrintStrean(s.getQutputStrean(), true);
if (DEBUG {
Systemout. printl n("Applet has created sin and sout ");

}

// tell the user that we've connected
out.println("Connected to " + s.getlnetAddress() +
":" + s.getPort());

if (DEBUG {
Systemout. printl n("Applet has connected to "+ s.getlnetAddress() +
":" + s.getPort());
}

String line;
/1 read the first response (a line) fromthe server
line = sin.readLine();
if (DEBUG {
Systemout.println("Applet has read a line: " + line);

}

/l wite the line to the user
out.println(line);
out. flush();
/1 send the command choice to the server
if (choice <=3) {

sout. println(choice);
} else {

sout. println("Wong conmand");

}
if (DEBUG {
Systemout. printl n("Applet has sent sout the choice: "+ choice);

}

/1 read a line fromthe server
line = sin.readLine();
if (DEBUG {
Systemout.println("Applet has read a line: " + line);

}

out.println(line);

157

Java Network Programming

/1 check if connection is closed, i.e., EOF
if (line == null) {
out.println("Connection closed by server.");

}
while (true) {
| i ne=sin. readLi ne();
i f (DEBUG {

Systemout.println("Applet has read a line: " + |ine);
}

out.printin(line);
if (line.equal s("EndO Record")) break;
}

}
catch (1 OCException e) {
Systemerr.println(e);

/1 always be sure to close the socket
finally {

try {
if (s !=null) s.close();

}
catch (1 OException e2) { }
}
}
}

Create the Java program that implements the “ ClientCommEXxit” class used in the applet:
“ClientCommEXxit.java”. This program deals with the specia applet command of “ Server
Exit”.

i nport java.io.*;
i nport java.net.*;

public class CientComrExit {
public static final int DEFAULT_PORT = 6789;
private String host = "";
private int port = O;
private QutputStreamos = null;
bool ean DEBUG = true;

public CientCommExit (String h, int p, QutputStreamo) {

host = h;
port = ((p == 0) ? DEFAULT_PORT : p);
0s = o0;

Socket s = null;
PrintWiter out = new PrintWiter (os, true);

if (DEBUG ({
System out. println("Applet about to create a socket on "
+ host + " at port " + port);
}
try {

// create a socket to conmunicate to the specified host and port
s = new Socket (host, port);
/1 create streans for reading and witing
Buf f er edReader sin = new Buf f eredReader (new
| nput St reanReader (s. getlnputStrean()));
PrintStream sout = new PrintStrean(s.getQutputStrean(), true);
if (DEBUG ({
Systemout. printl n("Applet has created sin and sout ");

158

Java Network Programming

}

/1 tell the user that we've connected
out.println("Connected to " + s.getlnetAddress() +
"+ s.getPort());

if (DEBUG {
System out. printl n("Applet has connected to "+ s.getlnetAddress() +
":" + s.getPort());
}

String line;
// read the first response (a line) fromthe server
line = sin.readLine();
if (DEBUG ({
Systemout. println("Applet has read a |ine:
}

/l wite the line to the user
out.println(line);
out. flush();
/1 send the comrand choice to the server
sout.println("Server Exit");
if (DEBUG {
Systemout. printl n("Applet has sent sout the command: Server Exit");
}

}
catch (1 Oexception e) {
Systemerr.println(e);

n

+ line);

/1 always be sure to close the socket
finally {

try {
if (s!=null) s.close();

}
catch (1 OException e2) { }
}
}
}

Create the Java program that implements the “ ClientCommSQL" class used in the applet:
“ClientCommSQL.java”. This program deals with the specia applet commands for SQL
statements.

i mport java.io.*;
i nport java.net.*;

public class dient CommBQ {
public static final int DEFAULT_PORT = 6789;
private String host = "";
private int port = 0;
private QutputStreamos = null;
bool ean DEBUG = true;

public CientCommSQ. (String h, int p, int choice, String cnd, QutputStream
0) {
host
port
0s = 0;
Socket s = null
PrintWiter out = new PrintWiter (os, true);

((p == 0) ? DEFAULT_PORT : p);

o

159

Java Network Programming

if (DEBUG ({
System out. println("Applet about to create a socket on "
+ host + " at port " + port);
}
try {

/'l create a socket to conmmunicate to the specified host and port
s = new Socket (host, port);
/1 create streanms for reading and witing
Buf f er edReader sin = new Buf f eredReader (new
| nput St reanReader (s. getlnputStreanm()));
PrintStream sout = new PrintStrean(s.getQutputStrean(), true);
if (DEBUG ({
Systemout. printl n("Applet has created sin and sout ");

}

/1 tell the user that we've connected
out.println("Connected to " + s.getlnetAddress() +
":" + s.getPort());

if (DEBUG {
System out. printl n("Applet has connected to "+ s.getlnetAddress() +
":" + s.getPort());
}

String line;
/1 read the first response (a line) fromthe server
line = sin.readLine();
if (DEBUG {
Systemout.println("Applet has read a line: " + line);

}

// wite the line to the user
out.println(line);
out. flush();
/1 send the command choice to the server
if (choice ==4) {

sout. println(choice);

sout. println(cnd);
} else {

sout. println("Wong conmand");

}
if (DEBUG {
Systemout. printl n("Applet has sent sout the choice/SQ.: "+ choice+
"/"+cnd);
}

/1 read a line fromthe server
line = sin.readLine();
if (DEBUG {
Systemout. println("Applet has read a |line:

}

out.println(line);
/1 check if connection is closed, i.e., EOF
if (line == null) {

out. println("Connection closed by server.");

+ line);

}
while (true) {
| i ne=sin. readLi ne();
i f (DEBUG {
Systemout. println("Applet has read a |ine:

}

+ line);

160

Java Netw

}

catc

Sy

ork Programming

out.println(line);
if (line.equal s("EndO Record")) break;

h (1 OException e) {
stemerr.println(e);

/1 always be sure to close the socket
finally {

tr

y {
if (s !=null) s.close();

}
catch (1 OException e2) { }

}
}
}

9.6.3. Prepare the Main Server Program

Create the main server program, “SDB.java’. This program accepts applet connections

and user commands and then dispatches the commands to individual processing programs
accordingly.
i nport java.net.*;
i mport java.io.*;
public class SDB {
public static void main (String args[]) throws | CException {
Socket client;
int port = 0;
int end = 0;
Buf f er edReader in;
Print Stream out ;
if (args.length != 1)
port = 6789;
el se
port = Integer.parselnt(args[0]);
try {
while (end == 0) {
client = accept (port);
i n = new BufferedReader (new
I nput St reanReader (client.getlnputStream)));

out = new PrintStrean(client.getCQutputStrean());

out.println ("You are now connected to the Sinple Database Server.");
/1 read a line

String line = in.readLine();

/1 and send back ACK

/1 out.println("OK");

Systemout.println("Received: " + line);

if (line.equals("1")) DispCus.Di spCus(out);

else if (line.equals("2")) DispPro.D spPro(out);
else if (line.equals("3")) DispTra.Di spTra(out);
else if (line.equals("4")) {

out.println("oK");

line = in.readLine();

Systemout.println ("Received: " + line);

161

Java Network Programming

ExeSQL. ExeSQ.(out, line);

if (line.equal s("Server Exit")) {
end = 1;

client.close();

}
} finally {
Systemout.println ("dosing");
}
}

static Socket accept (int port) throws |OException {
Systemout.println ("Starting on port " + port);
Server Socket server = new Server Socket (port);

Systemout.println ("Witing");
Socket client = server.accept ();
Systemout.println ("Accepted from" + client.getlnetAddress ());

server.close ();
return client;

9.6.4. Prepare the Database Access Programs
Create the Java program, “DispCus.java” to display the customer table.

i mport java.net.*;
i nport java.io.*;
i mport java.sql.*;
public class DispCus {
public static void DispCus(PrintStreamout) {

String url = "jdbc: odbc: dbtest™";
Connection con;

String query = "select * from Custoner ";
Stat ement stnt;

try {

d ass. for Name("sun. j dbc. odbc. JdbcOdbcDri ver");
} catch(java.l ang. O assNot FoundExcepti on e) {
Systemerr. print("C assNot FoundException: ");
Systemerr.println(e.getMessage());
}

try {
con = DriverManager. get Connection(url, "adm n", "admn");

stnt = con.createStatement();

Resul tSet rs = stnt.executeQery(query);
Resul t Set Met aData rsnd = rs. get Met aDat a() ;

i nt nunber O Col utms = rsnd. get Col umCount () ;
int rowCount = 1;

while (rs.next()) {

out.println("Row " + rowCount + ": ");
for (int i = 1; i <= numberOfColums; i++) {
out.print(" Colum " + i + ": ")

out.println(rs.getString(i));

out.printlin("");
ronwCount ++;

162

Java Network Programming

out.println("EndOf Record");
stnt.close();
con. cl ose();

} catch(SQLException ex) {
Systemerr. print("SQ.Exception: ");
Systemerr. println(ex.get Message());

Create the Java program, “DispPro.java” to display the product table.

i mport java.net.*;
i nport java.io.*;
i nport java.sql.*;
public class DispPro {
public static void DispPro(PrintStreamout) {

String url = "jdbc: odbc: dbtest™";
Connection con;

String query = "select * from Product ";
Stat ement stnt;

try {

Cl ass. for Name(" sun. j dbc. odbc. JdbcOdbcDri ver");

} catch(java.l ang. C assNot FoundExcepti on e) {
Systemerr. print("C assNot FoundException: ");
Systemerr.println(e.get Message());

}

try {
con = DriverManager. get Connection(url, "admn", "admn");
stnt = con.createStatenent();

Resul t Set rs = stnt.executeQery(query);
Resul t Set MetaData rsnd = rs. get MetabDat a() ;

i nt nunber O Col utms = rsnd. get Col umCount () ;
int rowCount = 1;

while (rs.next()) {

out.println("Row " + rowCount + ": ");
for (int i = 1; i <= numberOfColumms; i++) {
out.print(" Colum " + i + ": ")

out.println(rs.getString(i));

out.println("");
rowCount ++;
}
out.println("EndOf Record");
stnt.close();
con. cl ose();

} catch(SQLException ex) {

Systemerr. print("SQ.Exception: ");
Systemerr. println(ex.get Message());

Create the Java program, “DispTra.java” to display the transaction table.
i nport java.net.*;

i nport java.io.*;
i nport java.sql.*;

163

Java Network Programming

public class DispTra {
public static void DispTra(PrintStreamout) {

String url = "jdbc: odbc: dbtest”;

Connection con;

String query = "select * from Transaction ";
Statenment stnt;

try {

Cl ass. for Name(" sun. j dbc. odbc. JdbcOdbcDri ver");
} catch(java.l ang. O assNot FoundExcepti on e) {
Systemerr. print("C assNot FoundException: ");
Systemerr.println(e.getMessage());
}

try {
con = DriverManager. get Connection(url, "adm n", "admn");

stnt = con.createStatement();

Resul tSet rs = stnt.executeQery(query);
Resul t Set MetaData rsnd = rs. get MetabDat a() ;

i nt nunber O Col utms = rsnd. get Col umCount () ;
int rowCount = 1;

while (rs.next()) {

out.println("Row " + rowCount + ": ");
for (int i = 1; i <= nunmber O Col ums; i++) {
out.print(" Colum " + i + ": ");
out.println(rs.getString(i));
out.println("");
ronCount ++;
}
out.println("EndOf Record");
stnt.close();
con. cl ose();
} catch(SQLException ex) {
Systemerr.print("SQ.Exception: ");
Systemerr. println(ex.get Message());
}
}
}
Create the Java program, “ExeSQL.java” to execute an SQL statement.
i nport java.net.*;
i nport java.io.*;
i mport java.sql.*;
public class ExeSQ {
public static void ExeSQL(PrintStreamout, String sqlstr) {
String url = "jdbc: odbc: dbtest™;
Connection con;
Stat ement stnt;
try {
C ass. for Name("sun. j dbc. odbc. JdbcOdbcDri ver");
} catch(java.l ang. C assNot FoundExcepti on e) {
Systemerr. print("C assNot FoundException: ");
Systemerr.println(e.getMessage());
}
try {
con = DriverManager. get Connection(url, "admn", "admn");

stnt = con.createStatement();

ResultSet rs = stnt.executeQuery(sqlstr);
Resul t Set MetaData rsnd = rs. get MetabDat a();

164

Java Network Programming

i nt nunber O Col utms = rsnd. get Col umCount () ;
int rowCount = 1;
while (rs.next()) {

out.println("Row " + rowCount + ": ");
for (int i = 1; i <= numberOfColums; i++) {
out.print(" Colum " + i + " "y

out.println(rs.getString(i));

out.println("");
ronCount ++;

}

out.println("EndOf Record");
stnt.close();

con. cl ose();

} catch(SQ.Exception ex) {
Systemerr. print("SQLException: ");
Systemerr. println(ex.getMessage());
out.printIn("No result.");
out.println("EndO Record");

9.6.5. Compile and Test the Programs

The following steps are used to compile and execute the example:

e Compile al the Java programs.

» Executethe server program SDB classfirst.

» Executethe applet viathe applet.html using the appl etviewer browser.

Note the server’s host 1P address is hard-coded into the ClientApplet.java program. It can
be changed to any host address that the server is running. Of course, the applet program
has to be re-compiled. This address can be easily entered as a parameter of the program.

Students are required to understand the working principles of the program and test run the
example. Then, students are required to change the server program to deal with multiple
client requests ssmultaneoudly.

165

Java Network Programming

10. Developing Distributed Applications using
Java RM1 and CORBA

10.1. Study Points

* Understand the basic concepts of RMI.
» Beableto build client-server applications using RMI.
e Understand the basic conceptsin CORBA.

References: (1). [INP] Chapter 18. (2). [HSH]: Chapters 23, 24, 25; (3). [FAR] Chapter
3. (4). [Java2U] Chapters 38, 39, 40. (5). [Java2H]: Chapters 12, 13.

10.2. Web-Based Client-Server Computing

We can categorise Web-based client-server computing systems into four types: the proxy
computing model, the code shipping model, the remote computing model and the agent-
based computing model.

10.2.1. The Proxy Computing Model

The proxy computing (PC) model is typically used in Web-based scientific computing.
According to this model the client sends data and program to the server over the Web and
requests the server to perform the computing. The server receives the request, performs
the computing using the program and data supplied by the client and returns the result
back to the client. Typically, the server is a powerful high-performance computer or it has
some special system programs (such as special mathematical and engineering libraries)
that are necessary for the computing. The client is mainly used for interfacing with the
user. Figure 10.1 depicts this model.

<Data, Prograrms-

Figure 10.1. The proxy computing model

<F esults

10.2.2. The Code Shipping Model

The code shipping (CS) model is a popular Web-based client-server computing model. A
typical example is the downloading and then execution of Java applets on Web browsers,
such as Netscape Communicator and Internet Explorer. According to this model, the
client makes a request to the server, the server then ships the program (e.g., the Java
applets) over the Web to the client and the client executes the program (possibly) using
some local data. The server acts as the repository of programs and clients perform the
computation and interface with the user. Figure 10.2 illustrates this mode.

166

Java Network Programming

<Fequests

Figure 10.2. The code shipping model

10.2.3. The Remote Computing Model

The remote computing (RC) model is typically used in Web-based scientific computing
and database applications. According to this model, the client sends data over the Web to
the server and the server performs the computing using programs residing in the server.
After the completion of the computation, the server sends the result back to the client.
Typically the server is a high-performance computing server equipped with the necessary
computing programs and/or databases. The client is responsible for interfacing with the
user. The NetSolve system uses this model. Figure 10.3 depicts this model.

wlata .

@
wResults

Figure 10.3. The remote computing model

10.2.4. The Agent-Based Computing Model

The agent-based computing (AC) model is a three-tier model. According to this model,
the client sends either data or data and programs over the Web to the agent. The agent
then processes the data using its own programs or using the received programs. After the
completion of the processing, the agent will either send the result back to the client if the
result is complete, or send the data/program/midium result to the server for further
processing. In the latter case, the server will perform the job and return the result back to
the client directly (or via the agent). Nowadays, more and more Web-based applications
have shifted to the AC model. Figure 10.4 shows this model.

cDatas o <D o
«Data, Progeams «Data, Prograne-

<Result e <Results

Figure 10.4. The agent-based computing model

10.3. RMI Overview

10.3.1. RMI Architecture

Java Remote Method Invocation (RMI) is a simple, yet powerful, Java-based framework
for distributed object design. A remote invocation is a form of the RPC, where
procedures can be invoked from remote machines. Java RMI extends the RPC further to

167

Java Network Programming

the distributed objects world. RMI permits executing methods of objects residing in
remote machines, with results returned to the calling environment.

RMI is a higher level abstraction than servlets and servers. We typicaly develop an
application level protocol to communicate between Java clients and servers, but with
RMI we do not need to do this. RMI is as ssimple as invoking a method of an object. RMI
takes care of communication details for us.

Figure 10.5 shows the RMI architecture in which a Java client invokes a remote Java

server object.
Stubs Skeletons
Remote Reference Layer Femote Reference Layer
Remote Transport Layer Remote Transport Layer

¢ Metworl ¢

Figure 10.5 The RMI architecture

A client RMI call invokes the client-side stub (the proxy of the remote method that
resides on the client’s machine). The stub uses Object Serialization to marsha the
arguments, i.e, render argument object values into a stream of bytes that can be
transmitted over a network. The stub then passes control to the Java Virtual Machine's
RMI layer. The skeleton on the server side dispatches the call to the actual remote object
after unmarshaling the arguments into variables in memory. The stub and skeleton
programs are generated by the rmic compiler.

The Remote Reference layer permits various protocols for remote invocation, such as
unicast point-to-point (the one currently has been implemented).

Before a remote object can be accessed, it has to be registered into the naming server.
The RMI framework provides a simple naming service. Remote objects can register to
the naming server using the java.rmi.Naming class using a URL-like naming scheme.

10.3.2. Implementing Distributed Programs using RMI
The key interfaces and classesin RMI are:
* Remote. Aninterfacein java.rmi package. It defines all remote interfaces.

 RemoteObject. It is a class. RMI server functions are provided by the
RemoteObject and its subclasses.

168

Java Network Programming

RemoteServer. It is asubclass of RemoteObject.

UnicastRemoteObject. It is a subclass of RemoteObject in the java.rmi.server
package.

RemoteException. A class in java.rmi package, used for RMI to throw exceptions
at runtime.

RMI implementation involves the following steps:

Defining the remote interface: This is the interface through which remote clients
will access the server and is done by extending the Remote interface and defining
methods that can be invoked remotely.

Implementing the remote interface. Remote method calls will ultimately be made
upon their implementations. The interface is normally implemented via the
extending of the unicastRemoteObject class. The unicastRemoteObject class
defines a remote object which is valid when the server is running. This object
hides the implementation of the interface from the public interface and can
contain some methods that are not visible through the interface. Any remote
object passed as an argument to RMI must also be defined as an interface.

Create stubs and skeletons using rmic compiler.
Compile the remote interface and implementation file using javac compiler.

Create a client program, either a pure Java application or an applet and the HTML
page to invoke the server services.

10.4. Smple RM| Examples

10.4.1. A Date Service

In this example we create a simple date server to provide the date and time information to
the clients. The first step is to define the server interface, named DateServer, that lists all
methods a client can call. In this example, only one method is defined. Here is the Java
program DateServer .java:

i mport java.rm .Renote;
i mport java.rm . Renot eExcepti on;
import java.util.Date;

public interface DateServer extends Renote {

}

public Date getDate () throws RenoteException;

Note that the getDate() method must throw a RemoteException to alow the program to
detect problems occurred in remote invocation.

The second step is to implement the remote object interface, through the program
DateServerImpl java:

import java.rm.*;
import java.rm.server.*;

169

Java Network Programming

import java.util.Date;

public class DateServerlnpl extends Unicast RenpteCbject inplenents DateServer {
public DateServerlnpl () throws RenoteException {

}

public Date getDate () {
return new Date ();

}

public static void main (String[] args) throws Exception {
Dat eServer | npl dateServer = new DateServerlnpl ();
Systemout. println("Registering to Name Server");
Nami ng. bind ("Date Server", dateServer);
Systemout. println("Registered!");
}
}

All remote object implementation must extend RemoteObject or one of its subclasses
(such as the UnicastRemoteObject, provided by the JDK for implementing TCP-based
client-server programs). The getDate method simply returns the date information of the
server host. The main method creates a new DateServerimpl named dateServer and
registers it to the RMI naming registry using the name of “Date Server”. If the nameis
already registered, then an AlreadyBoundException will be raised. To overcome this, we
could use the rebind method instead of the bind method.

The third step is to generate the stub and the skel eton programs:
rmic DateServerimpl

The two classes (DateServerlmpl_Stub.class and DateServerimpl_Skel.class) will be
generated after the compilation.

The fourth step is to create the client program to access the services provided by the
server. The client is named DateClient.java:

i mport java.rm .Nam ng;
import java.util.Date;

public class Datedient {
public static void main (String[] args) throws Exception {
if (args.length != 1)
throw new ||| egal Argunent Exception ("Syntax: DateCd ient <hostnane>");
Dat eServer dateServer = (DateServer) Nam ng.| ookup
("rm://" + args[0] + "/Date Server");
Dat e when = dateServer.getDate ();
Systemout.println (when);

}
}

The client program uses the lookup method of java.rmi.Naming to get the information of
the “Date Server” from the registry. The lookup method has two parameters, one provides
the location of the registry and the other provides the name of the server.

The last step of using this simple RMI program is to run it via the following executions:
o Start theregistry: rmiregistry
o Start the server: java DateServerlmpl

170

Java Network Programming

« Start the client: java DateClient localhost

10.4.2. A Demo Service

The second simple example uses the object-oriented approach to demonstrate the
building of RMI distributed objects. Remote objects are referenced via interfaces. In
order to implement aremote object, you must first create an interface for that object. This
interface must be public and must extend the Remote interface. Define the remote
methods that you want to invoke within this interface. These methods must throw
RemoteException.

The following MyServer.java program defines two methods: getDataNum() and
getData(). The getDataNum() method returns an integer indicating the total number of
data strings that are available on the server. The getData() method returns the nth data
string.

import java.rm.*;

public interface M/Server extends Renote {

int getDataNun() throws RenpteException;
String getData(int n) throws RenpteException;

Compile this program using
javac MyServer.java.

After creating the remote interface, you must create a class that implements the remote
interface. This class typically extends the UnicastRemoteObject class. However, it could
also extend other subclasses of the RemoteServer class.

The implementation class should have a constructor that creates and initializes the remote
object. It should aso implement all of the methods defined in the remote interface. It
should have a main() method so that it can be executed as a remote class. The main()
method should use the setSecurityManager() method of the System class to set an object
to be used as the remote object's security manager. It should register a name by which it
can be remotely referenced with the remote registry

The following MyServerlmpl.java program provides the implementation class for the
MyServer interface. You should change the hostName value to the name of the host
where the remote object is to be located.

The data array contains five strings that are retrieved by the client object via the
getDataNum() and getData() methods. The getDataNum() method returns the length of
data, and the getData() method returns the nth element of the data array.

The main() method sets the security manager to an object of the RMISecurityManager
class. It creates an instance of the MyServerlmpl class and invokes the rebind() method
of Naming to register the new object with remote registry. It registers the object with the
name MyServer and then informs you that it has successfully completed the registration
process

import java.rm.*;
i mport java.rm.server.*;

171

Java Network Programming

public class MyServerlnpl extends Unicast Renpt eObj ect
i mpl ements MyServer {
static String host Name="1| ocal host";

static String data[] = {"Renote", " Method", "l nvocation","Is","Geat!"};
public MyServerlnmpl () throws RenoteException {
super () ;

public int getDataNum() throws RenpteException {
return data.length;

public String getData(int n) throws RenpteException {
return data[n%ata.length];

public static void main(String args[]){

try {
MyServerlnmpl instance = new MyServerlmpl ();

Nami ng. rebi nd("//" +host Nane+"/ MyServer", instance);
Systemout.println("l'mregistered ");
} catch (Exception ex) {
System out. println(ex);
}
}
}

Compile this program using the RMI compiler:
rmc MyServerl npl

The rmic compiler creates the MyServerlmpl_Stub.class and MyServerlmpl_Skel.class
filesin the current directory.

You'll need the MyServer.class interface file to compile your client software, and you'll
need MyServer.class and MyServerlmpl_Stub.class to run your client. Before going any
further, you should copy these files to an appropriate location on your client host.

Now you must start your remote registry server on your server host (use start
rmiregistry in Windows or rniregistry& in Unix). This program listens on the
default port 1099 for incoming requests to access named objects. The named objects must
register themselves with the remote registry program in order to be made available to
requesters. When you execute the MyServerlmpl program (usej ava MyServer | npl), it
creates an object of the MyServerimpl class and registers the object with the remote
registry.

Now we have the remote server up and running, the following program MyClient.java
remotely invokes the methods of the MyServer object and displays the results it returns.
Y ou must change the hostName variable to the name of the remote server host where the
remote object is registered.

MyClient consists of a single main() method that invokes the lookup() method of the
Naming class to retrieve a reference to the object named MyServer on the specified host.
It casts this object to the MyServer interface. It then invokes the getDataNum() method of
the remote object to retrieve the number of available data items, and the getData()
method to retrieve each specific data item. The retrieved data items are displayed in the
console window.

import java.rm.*;
public class MyCient {

172

Java Network Programming

static String host Name="1| ocal host";
public static void main(String args[]) {

try {
MyServer server = (MyServer) Nam ng.| ookup("//"+host Nanme+"/ MW Server");

int n = server.getDataNun();
for(int i=0;i<n;++i) {
Systemout. println(server.getData(i));

}
} catch (Exception ex) {
System out. println(ex);

}
}
}
Compile this program using the RMI compiler:

javac MyCient.java.

Now you can run your client to access the service provided by the server.

10.5. Interfaces and Classes from RMI-Related Packages

The man packages for the RMI framework are: javarmi, java.rmi.server,
java.rmi.registry, java.rmi.dgc, and java.rmi.activation (Java 1.2).

» javarmi--Provides the Remote interface, a class for accessing remote names, the
MarshalledObject class, and a security manager for RMI

e javarmi.registry--Provides classes and interfaces that are used by the remote registry

* javarmi.server--Provides the classes and interfaces used to implement remote objects,
stubs, and skeletons, and to support RMI communication. This package implements
the bulk of the RMI API

* javarmi.activation--Supports persistent object references and remote object activation

» javarmi.dgc--Provides classes and interfaces that are used by the RMI distributed
garbage collector

10.5.1. The java.rmi Package

The javarmi package declares the Remote interface, the MarshalledObject, Naming and
RMISecurityManager classes, and a number of exceptions that are used with remote
method invocation.

The Remote interface must be implemented by al remote objects. This interface has no
methods. It is used for identification purposes.

The MarshalledObject class was added in JDK 1.2. It is used to maintain a serialized byte
stream of an object. Its get() method is used to retrieve a deserialized version of the
object.

The Naming class provides static methods for accessing remote objects via RMI URLSs.
The bind() and rebind() methods bind a remote object name to a specific RMI URL. The
unbind() method removes the binding between an object name and an RMI URL. The
lookup() method returns the remote object specified by an RMI URL. The list() method

173

Java Network Programming

returns the list of URLs that are currently known to the RMI registry. The syntax for RMI
URLsisasfollows:

rm://host: port/renoteChject Name

The host and TCP port are optional. If the host is omitted, the local host is assumed. The
default TCP port is 1099.

The RMISecurityManager class defines the default security policy used for remote object
stubs. It only applies to applications. Applets use the AppletSecurityManager class even
if they perform RMI. You can extend RMISecurityManager and override its methods to
implement your own RMI security policies. Use the setSecurityManager() method of the
System class to set an RMISecurityManager object as the current security manager to be
used for RMI stubs.

The javarrmi package defines a number of exceptions. The RemoteException class is the
parent of al exceptions that are generated during RMI. It must be thrown by all methods
of aremote object that can be accessed remotely.

10.5.2. The java.rmi.registry Package

The java.rmi.registry package provides the Registry and RegistryHandler interfaces and
the LocateRegistry class. These interfaces and classes are used to register and access
remote objects by name. Remote objects are registered when they are identified to a
host's registry process. The registry process is created when the rmiregistry program is
executed.

The Registry interface defines the bind(), rebind(), unbind(), list(), and lookup() methods
that are used by the Naming class to associate object names and RMI URLSs. The registry
interface also defines the REGISTRY _PORT constant that identifies the default TCP port
used by the registry service.

The RegistryHandler interface provides methods for accessing objects that implement the
Registry interface. The registryStub() method returns the local stub of a remote object
that implements the Registry interface. The registrylmpl() method constructs a Registry
object and exportsit via a specified TCP port.

The LocateRegistry class provides the static getRegistry() method for retrieving Registry
objects on the local host or a remote host. It also provides the createRegistry() method to
construct a Registry object and export it via a specified TCP port.

10.5.3. The java.rmi.server Package

The javarmi.server package implements severa interfaces and classes that support both
client and server aspects of RMI.

The RemoteObject class implements the Remote interface and provides a remote
implementation of the Object class. All classes that implement remote objects, both client
and server, extend RemoteObject.

The RemoteServer class extends RemoteObject and is a common class that is subclassed
by specific types of remote object implementations. It provides the static setLog() and

174

Java Network Programming

getLog() methods for setting and retrieving an output stream used to log information
about RMI accesses. It also provides the getClientHost() method that is used to retrieve
the host name of the client performing the remote method invocation.

The UnicastRemoteObject class extends RemoteServer and provides the default remote
object implementation. Classes that implement remote objects usually subclass
UnicastRemoteObject. Objects of the UnicastRemoteObject class are accessed via TCP
connections on port 1099, exist only for the duration of the process that creates them, and
rely on astream-based protocol for client/server communication.

The RemoteStub class extends RemoteObject and provides an abstract implementation of
client side stubs. A client stub isalocal representation of a remote object that implements
all remote methods of the remote object. The static setRef() method is used to associate a
client stub with its corresponding remote object.

The RemoteCall interface provides methods that are used by stubs and skeletons to
implement remote method invocations.

The RemoteRef interface is used by RemoteStub objects to reference remote objects. It
provides methods for comparing and invoking remote objects and for working with
objects that implement the RemoteCall interface.

The ServerRef interface extends the RemoteRef interface and is implemented by remote
objects to gain access to their associated RemoteStub objects.

The Skeleton interface is implemented by remote skeletons. It provides methods that are
used by the skeleton to access the methods being requested of the remote object, and for
working with method arguments and return val ues.

The Unreferenced interface is implemented by a remote object to enable it to determine
when it isno longer referenced by aclient.

The RMIClassLoader class supports the loading of remote classes. The location of a
remote class is specified by either an URL or the javarmi.server.codebase system
property. The static loadClass() method loads a remote class, and the static
getSecurityContext() returns the security context in which the class |loader operates. The
LoaderHandler interface defines methods that are used by RMIClassClassLoader to load
classes.

The Operation class is used to store a reference to a method. The getOperation() method
returns the name of the method. The toString() method returns a String representation of
the method's signature.

The ObjID class is used to create objects that serve as unique identifiers for objects that
are exported as remote by a particular host. It provides methods for reading the object 1D
from and writing it to a stream. The UID class is an abstract class for creating unique
object identifiers.

The LogStream class extends the PrintStream class to support the logging of errors that
occur during RMI processing.

The RMISocketFactory class is used to specify a socket implementation for transporting
information between clients and servers involved in RMI. This class provides three

175

Java Network Programming

alternative approaches to establishing RMI connections that can be used with firewalls.
The datic setSocketFactory() method can be used to specify a custom socket
implementation. The RMIClientSocketFactory and RMIServerSocketFactory interfaces
provide support for both client and server sockets. The RMIFailureHandler interface
defines methods that handle the failure of a server socket creation. The
RMIFailureHandler interface provides the failure() method for handling exceptions that
occur in the underlying RMI socket implementation.

10.5.4. The java.rmi.activation Package

The javarrmi.activation package is a new RMI package that was added to JDK 1.2. It
provides the capabilities to activate remote objects as heeded and to use persistent object
references.

The Activatable class defines the basic methods implemented by activatable, persistent
objects. It contains two constructors. One constructor is used to create and register (with
the activation system) objects that can be accessed via specific TCP ports. The other
constructor is used to activate an object based upon an ActivationlD object and persistent
data that has been stored for that object. The export() object methods are used to make an
object available for use via a specific TCP port. The getID() method returns an object's
ActivationlD (used to uniquely identify the object). The register() and unregister()
methods register (and unregister) an object with the runtime system. The inactive()
method is used to tell the activation system that an object is inactive, or, if active, that it
should be deactivated.

Objects of the ActivationlD class are used to uniquely identify activatable objects and
contain information about how objects are to be activated. An object's ActivationID is
created when the object is registered with the activation system. The activate() method is
used to activate the object referenced by an ActivationID object. The equals() and
hashCode() methods are used to compare two ActivationID objects. Two ActivationlD
objects are equal if they reference the same object.

The ActivationDesc class encapsul ates the information necessary to activate an object. It
provides five methods that can be used to retrieve this information. The getClassName()
method returns the described object's class name. The getCodeSource() method returns a
CodeSource object that identifies the described object's location and other source
information. The getData() method returns a MarshalledObject object that contains
seridlized information used to initialize the described object. The getGrouplD() method
returns the described object's ActivationGrouplD object. The getRestartMode() method
returns the restart mode associated with the activation descriptor.

The ActivationGroup class is used to group activatable objects so that they execute in the
same JVM. ActivationGroup objects are used to create instances of the activatable
objects within their group. The activeObject() method is used to inform an
ActivationGroup that an activatable object has been activated. The createGroup() method
is used to specify the current ActivationGroup object for the current VM instance. The
currentGrouplD() method returns the ActivationGrouplD object of the current
ActivationGroup object. The getSystem() method returns the current ActivationSystem
object. The inactiveObject() method isinvoked when an object in the group is deactivated

176

Java Network Programming

(becomes inactive). This method deactivates the object if the object is till active. The
inactiveGroup() method is used to report an inactive group to the group's
ActivationMonitor object. The newlnstance() method creates a new instance of an
activatable object. The setSystem() method sets the ActivationSystem object for the
current VM.

The ActivationGroupl D class uniquely identifies an ActivationGroup object and contains
information about the object's activation system. The getSystem() method returns the
ActivationSystem object that is used to activate the referenced ActivationGroup object.
The equals() and hashCode() methods are used to compare ActivationGroupl D objectsin
terms of their referenced ActivationGrouplD objects.

The ActivationGroupDesc class encapsulates the information necessary to create an
ActivationGroup object. The getClassName() method returns the described
ActivationGroup object's class name. The getCodeSource() method returns the described
ActivationGroup object's CodeSource object. The getData() method returns a
MarshalledObject object that contains serialized data about the described
ActivationGroup object. The CommandEnvironment inner class provides support for
implementation-specific options.

The ActivationSystem interface is implemented by objects that register activatable
objects and activatable object groups. The SYSTEM_PORT constant identifies the TCP
port used by the activation system. The registerGroup(), registerObject(),
unregisterGroup(), and unregisterObject() methods are used to register and unregister
Activatable and ActivationGroup objects. The activeGroup() method is used to inform
the activation system about an active ActivationGroup object.

The Activator interface is implemented by objects that activate objects that are registered
with an ActivationSystem (object). The activate() method activates an object based upon
its associated Activationl D object.

The Activationlnstantiator interface provides methods for classes that create instances of
activatable objects. The newlnstance() method creates new object instances based on
their associated ActivationlD and ActivationDesc objects.

The ActivationMonitor provides methods for maintaining information about active and
inactive objects. The activeObject(), inactiveObjet(), and inactiveGroup() methods are
used to collect this information.

10.5.5. The java.rmi.dgc Package

The java.rmi.dgc package contains classes and interfaces that are used by the distributed
garbage collector. The DGC interface is implemented by the server side of the distributed
garbage collector. It defines two methods: dirty() and clean(). The dirty() method
indicates that a remote object is being referenced by a client. The clean() method is used
to indicate that a remote reference has been compl eted.

The Lease class creates objects that are used to keep track of object references. The
VMID class is used to create an ID that uniquely identifies a Java virtual machine on a
particular host.

177

Java Network Programming

10.6. An Interesting RM | Application

The example is an implementation of the previous chat program (Section 8.5) using RMI.
This program consists of three programs. RMIChatClient.java, RMIChatServer .java and
RMIChatServerImpl.java.

10.6.1. The Chat Server and Its Implementation

The chat server program (RMIChatServer.java) is simple. It just defines the API through
which the client can call the server:

import java.rm.*;

public interface RM Chat Server extends Renote {
public static final String REA STRY_NAME = "Chat Server";
public abstract String[] getMessages (int index) throws RenoteException;
public abstract void addMessage (String message) throws RenoteException;

}

The implementation of the chat server is done by the program RMIChatServerImpl.java.
This program provides the implementation of the remote AP, instantiates the server, and
register the server with the naming registry.

inmport java.rm.*;

import java.util.*;

import java.rm.server.*;
import java.rm.registry.*;

public class RM Chat Server|npl extends Uni cast Renot eCbject inplenents
RM Chat Server {
protected Vector messages;

public RM Chat Serverlnmpl () throws RenoteException {
messages = new Vector ();

}

public String[] get Messages (int index) {
int size = messages. size ();
String[] update = new String[size - index];
for (int i =0; i < size - index; ++ i)
update[i] = (String) messages.elenentAt (index + i);
return update;

}

public void addMessage (String message) {
messages. addEl enent (nmessage);

}

public static void main (String[] args) throws RenoteException {
RM Chat Server | npl chat Server = new RM Chat Serverlnmpl ();
Regi stry registry = LocateRegistry.getRegistry ();
regi stry.rebind (REG STRY_NAME, chat Server);
}
}

178

Java Network Programming

10.6.2. The Chat Client

The chat client program (RMIChatClient.java) opens a typical chat Frane, locates the
chat server, and proceeds to remotely access the server. A thread that regularly queries
the server for new messages via the getMessages() method is used to receive update from
the server.

i nport java.aw.*;

import java.rm.*;

i nport java.aw.event.*;
inmport java.rm.registry.*;

public class RM ChatCient inplenments Runnable, ActionListener {
protected static final int UPDATE_DELAY = 10000;

protected String host;
protected Frane frane;
protected TextField input;
protected Text Area output;

public RMChatdient (String host) {
this. host = host;

frame = new Frame ("RM Chatdient [" + host + "]");
frame.add (output = new TextArea (), "Center");
out put.setEditabl e (false);
frame.add (input = new TextField (), "South");
i nput . addAct i onLi stener (this);
frame. addW ndowLi st ener (new W ndowAdapter () {
public void wi ndowOpened (W ndowEvent ev) {
i nput . request Focus ();
}

public void w ndowd osi ng (W ndowEvent ev) {
stop ();

fr:ame. pack ();

}

protected RM Chat Server server;
protected Thread updater;

public synchroni zed void start () throws RenoteException, NotBoundException {
if (updater == null) {
Regi stry registry = LocateRegistry.getRegistry (host);
server = (RM Chat Server) registry.|lookup (RM Chat Server. REG STRY_NAME) ;
updater = new Thread (this);
updater.start ();
frame.setVisible (true);
}
}

public synchroni zed void stop () {
if (updater !'= null) {
updater.interrupt ();
updater = null;
server = nul |;

frame.setVisible (fal se);

179

Java Network Programming

}

public void run () {
try {
int index = 0;
while (! Thread.interrupted ()) {
String[] nmessages = server.get Messages (i ndex);
int n = nessages. | ength;

for (int i =0; i <n; ++i)
out put . append (messages[i] + "\n");
i ndex += n;

Thr ead. sl eep (UPDATE_DELAY);

} catch (InterruptedException ignored) {
} catch (RenoteException ex) {
input.setVisible (false);
frane.validate ();
ex. printStackTrace ();

}
}
public void actionPerforned (ActionEvent ev) {
try {
RM Chat Server server = this.server;

if (server !'=null)
server. addMessage (ev.getActionConmmand ());
input.setText ("");

} catch (RenoteException ex) {
Thread tnp = updater;
updater = null;
if (tnp !'= null)

tnp.interrupt ();
input.setVisible (false);
franme.validate ();
ex. printStackTrace ();
}
}

public static void main (String[] args) throws RenoteException,
Not BoundExcepti on {
if (args.length !'= 1)
throw new ||| egal Argunent Exception ("Syntax: RM ChatCient <host>");
RM Chatd ient chatCient = new RM ChatClient (args[0]);
chatCient.start ();

}
}

10.7 CORBA

10.7.1. What is CORBA?

The following points list a brief answer to the question: “what is the Common Object

Request Broker Architecture (CORBA)?

» CORBA is a specification of an architecture and interface that allows an application
to make request of objects (servers) in a transparent, independent manner, regardless
of platform, operating system or locale considerations.

* CORBA was developed by the Object Management Group (OMG).

180

Java Network Programming

e The CORBA programming paradigm combines distributed client-server
programming and object-oriented programming methodol ogies.

» CORBA is the specification of the Object Request Broker (ORB) component of the
Object Management Architecture (OMA).

* The ORB isthe message bus that facilitates object communications across distributed
heterogeneous computing environment.

* The OMA provides fundamenta models on which CORBA and other standard
interfaces are based.

The Object management architecture (OMA) consists of the following key features:
* The Core Object Model: defines the concepts that allow distributed application
development to be facilitated by an Object Request Broker (ORB).
0 objects
0 operations
0 non-object types
o interfaces and substitutability
» The Reference Architecture: provides standardised interfaces for supporting
application development.
o TheORB
o Object Services
0 Domain Interfaces
o Common Facilities
0 Application Interfaces

Figure 10.2 illustrates the OMA Reference Architecture.

Application Objectz Daraain Objectz
< Object Request Broker >
Cibject Sewices ‘ Coraroon Facilities ‘

Figure 10.6 OMA Reference Architecture

10.7.2. The CORBA Architecture

CORBA supports the client-server programming:

» Client: makes regquests to other components in the distributed application.

e Server: provides an implementation of a component that a client uses. A server can
also acts as clientsto other servers.

» Interface definition: describes the functionality of a CORBA object. Clients of
CORBA abjects rely only on the interface.

* CORBA servers. programs that provide the implementation of one or more CORBA
objects.

181

Java Network Programming

Figure 10.3 illustrates the client-server interaction in CORBA

ORE librany
Saprer L]

Object i pleroznistion

Skeleton oode

Tr=raon

Service request

4’
Client Proxy (Siob)
Client
]
GORE libraty

Figure 10.7 CORBA client and server

CORBA provides location transparency and programming language transparency via the
use of OMG's Interface Definition Language (IDL).

CORBA Architecture can be viewed as following:
» |IDL compiler generated code
0 Stub code: linked into a CORBA client
0 Skeleton code: linked into a CORBA object implementation
* An ORB agent/daemon process
e Library code
* Interfaces among ORB components. See Figure 10.4.

O bject i pleroe nistion
inwocation CRE inte fface TDL gkeleton inerfaoe
inte o

CRE Core

Trop b roe nocion

Treerfoce i
repoELocy

PO bocy
. Per-object type genecited intertee :l Stindard intertxe

777777 Thew may be rmhiple object odaptes (] GRE de pende ntintectxce
Figure 10.8 CORBA architecture

Steps to invoke operations on objects:

* Theclient request a service from the object implementation. The ORB transports the
request which invokes the method using object adapters and the IDL skeleton.

» Objects are accessed through object references.

182

Java Network Programming

Object references contain enough information to allow the ORB to locate the
machine, the server, and the object to which the reference refers.

Static invocation interface: the the IDL definition of an object reference is known at
the compile time.

Dynamic reference interface: the the IDL definition of an object reference is not
known at the compile time. A request to the Interface Repository (IR) is used to
discover the object's operations and parameters.

Operation invocation semantics: at-most-once.

Interface definition language (IDL):

IDL isdesigned to specify the functionality of objects.

Programming language code is generated from the IDL definition to perform the
tedious, error prone, and repetitive tasks of establishing network connections,
marshaling, locating object implementations, and invoking the right code to perform
an operation.

Data types.

» basic types

e dtructure

e discriminated union
e aray

e seguence

e exception

Attributes and operations: actions declared in IDL that can be requested of a CORBA
object.

Inheritance: to extend the functionality of an existing interface. CORBA inheritance
isindependent of implementation inheritance, as shown in Figure 10.5.

Client Senrer i pleroe niation

Option |
1ae inlerfaoe A Server A
1ze interfce B ‘m!

2= inle s O

. -
- kS

(e

T, =

Tnterfaxce (TDL detinition) @
Ciption 2 (inerfoce &)
T‘
- - - Seper B
| inerto: B | | intertwe O |
inerfioe B) {interfce

Figure 10.9. Interface inheritance and implementation inheritance

b

CORBA uses stubs and skeletons in much the same way as Java RMI. A stub isaloca
proxy for a remote object. It presents the same interface as the server object, but runs on
the same computer as the client. A skeleton is a remote interface to the server object's

183

Java Network Programming

implementation. It runs on the same computer as the server object and provides an
interface between the server object's implementation and other objects.

The stub and skeleton are connected via an ORB. The ORB forwards method invocations
from the stub to the skeleton and uses a special object called an Object Adapter (OA),
which runs on the same computers as the server object. The OA activates the server
object, if required, and helps to manage its operation. You can think of the ORB as
analogous to the remote reference and transport layers of Java RMI, and the OA as being
like the remote registry. The OA is sometimes referred to as a Basic Object Adapter
(BOA).

10.7.3. The Interface Definition Language

Because one of CORBA's main goas is to provide a distributed object-oriented
framework in which objects created in a variety of programming languages can interact,
it needs a way to bridge the gap between multiple programming language interfaces and
the ORB. IDL isthe key to achieving this goal.

IDL provides a language-neutral way of describing the interfaces of objects. It describes
an interface in the same manner that Java interfaces do. It defines the methods contained
in an interface, their arguments, and their return vaues, but does not specify how the
interfaces are implemented.

A server object's interface is specified in IDL, and the IDL specification is compiled to
produce the stub and skeleton to be used for that object. For example, you could specify
the interface of a server in IDL and then compile the IDL to create the C++ source code
for the server's skeleton. Y ou could also compile the same IDL to create a Java stub.

IDL compilers are available for C, C++, Smalltalk, Ada, and (of course) Java. These
compilers trandate IDL into stubs and skeletons in the source code of these languages.
Y ou then use a language-specific compiler to compile the stubs and skeletons to binary
code or byte code.

In order to develop an IDL compiler for a particular language, a language mapping must
be devel oped that shows how the datatypes and method invocation semantics of IDL map
to the language. The Java language mapping has been completed and is available at
http://splash.javasoft.com/products/jdk/idl/docs/idl-java.html. An IDL-to-Java compiler,
aptly named idltojava, is aso available from the Java Developer Connection at
http://devel oper.javasoft.com. You should download idltojava to perform the example in
this chapter. Copy the idltojava program to a directory that isin your execution path.

10.7.4. An Example of CORBA for Java

One commonly used CORBA for Java is the Orbix Web developed by IONA
Technologies Ltd. The general syntax of CORBA IDL isasfollows:

nodul e <identifier> {
<type decl arations>;
<constant decl arations>;
<exception decl arations>;
interface <identifier> [: <inheritance>] {

184

Java Network Programming

<type decl arati ons>;

<constant decl arati ons>;

<attribute declarations>;

<exception decl arati ons>;

[<operation_type>] <identifier> (<paraneters>)
[rai ses exception] [<context>};

[<operation_type>] <identifier> (<paraneters>)
[rai ses exception] [<context>};

}

interface <identifier> [: inheritance>] {

}
}

Below shows an example of alDL definition for a grid application:

/1 1DL;
[l in file grid.idl

interface Gid {

readonly attribute short height;
readonly attribute short width;

void set(in short n, in short m in |ong value);
void get(in short n, in short m;

The interface provides two attributes, height and width which define the size of a grid.
Since they are labeled readonly, they cannot be directly modified by a client. There are
also two operations: the set() operation alows an element of grid to be set, and the get()
operation returns an element. Parameters here are labeled as in, which means they are
passed from the client to the server. Other |abels can be out or inout.

The following command compilestheidl file:
idl grid.idl

After the compilation, the following files are generated and stored in a local directory

java_output:

» _Gridref.java: A Java interface; the methods of this interface define the Java client
view of the IDL interface.

e Grid.java: A Java class which implements the methods defined in interface _GridRef.
This class provides functionality which allows client method invocations to be
forwarded to a server.

e _GridHolder.java: A Java class which defines a Holder type for class Grid. Thisis
required for passing Grid objects as inout or out parameters to and from IDL
operations.

e GridOperations.java: A Java interface which maps the attributes and operations of
the IDL definition to Java methods. These methods must be implemented by a class
in the server.

185

Java Network Programming

e boaimpl_Grid.java: An abstract Java class which alows server-side developers to
implement the Grid interface using one of two techniques available in OrbixWeb; this
techniqueis called the BOAImpl approach to interface implementation.

» tieGrid.java: A Java class which allows server-side devel opers to implement the Grid
interface using one of two techniques available in OrbixWeb; this techniqueis called
the TIE approach to interface implementation.

o dispatcher_Gridjava: A Java class used internally by OrbixWeb to dispatch
incoming server requests to implementation objects. Application developers do not
require an understanding of this class.

After the implementation of the _GridOperations.java program and a client program, the
program can be compiled. Then the server should be registered to the registry by using
the putit command. The client can now access the server from any machine since it
knows the machine name, the server name and object names.

186

Java Network Programming

11. Java Servlets and Java Beans

11.1. Study Points

» Understand the basic concepts of Java servlets.
* Understand the basic concepts of Java Beans.

Reference: (1). http://java.sun.com/j2ee/tutorial/1l_3-fcs/doc/Serviets.html. (2). [HSH]
Chapters 26 and 27. (3). [Java2U] Chapters 24, 25, 26, 27, 28, and 29.

11.2. Introduction of Servlets

11.2.1. What is a Servlet?

Servlets can be thought of as server-side applets that perform server-side tasks, sending
responses to web clients. Servlets built on top of HTTP protocol are faceless objects
without a visible user interface. Servlets were first made available with Sun’s Jeeves web
server. Servlets can be called from web page when a dynamic document is requested or
can be invoked directly via a URL. The servelet APl can be integrated with API
components of JDBC, RMI, and IDL, making it possible to create sophisticated
applications using pure Java services.

Servlets can be started when the server starts, or activated on demand when a client
request comes in. Servlet can either be loaded across the network or from a local disk.
After servlets are activated, they handle requests until the server dies or its destroy()
method has been called.

The main difference of servlets and CGI scripts is that a CGI script requires a new
process for every client request. This is a slow, expensive operation on many operating
systems. Servlets, on contrast, keep running as a separate process and do not require
overhead of starting and stoping additional processes for each request. If a site is
performing many short-running CGI scripts, the cost of script invocation can be high. If a
relatively small number of CGI hits is received and each performs a compute bound
function in compiled code, CGI might outperform interpreted Java code.

CGl scripts are aso platform dependent, and their code often needs to be re-written or
recompiled for different platforms. However, their behavior is specified by the
universally accepted HTTP protocol. Servlets, on the other hand, can be ported to any
web server supporting Java and the servlet extension. However, web servers with servlet
capabilities are not yet popular.

The Java server-side APl used in Jeeves has three mgor components. Base server
framework (package sun.server), HTTP server framework (package sun.server.http) and
servlet application programming interface.

The base server architecture provides a framework for servers maintaining multiple
threads for client connections. An acceptor thread accepts connections on a continuous
basis. When a connection is made, it is sent to a handler thread.

The HTTP framework includes classes for handling standard HTTP functionality such as
form processing (FormServiet), CGIl requests (CGlServiet), server side includes

187

Java Network Programming

(SSncludeServiet), file handling (FileServiet), and server-side image map requests
(ImagemapServiet). The serviet application interface API (package java.serviet) provides
classes for servlet customization.

11.2.2. Servlets Security and Applications

Four different types of servlets with different levels of trust exist: Jeeves servlets, local
servlets, signed servlets, and unsigned servlets.

Jeeves servlets are part of the base server framework and are automatically granted full
access rights. Local servlets are loaded from the local disks and are therefore trusted and
granted full access rights. Signed serviets have either limited or full access rights
according to the rules set by the Jeeves administrator. Finally, constraints are placed on
unsigned servlets, which run in the server sandbox environment, which has limited access
to server functionality. Servlets can be coded to require that the user enter an ID and
password.

Servlets can be used for applications ranging from server administration to complex
interactions between servlets and browser-side applets. Servlets can provide persistence
and state data, making it possible to create interesting applications for transactions, in
place of existing approaches like “cookies” and hidden fields.

11.2.3. Servlet Life Cycle

The life cycle of a servlet is controlled by the container in which the servlet has been
deployed. When a request is mapped to a servlet, the container performs the following

steps:
1. If aninstance of the servlet does not exist, the container:
a. Loadsthe servlet class
b. Instantiates an instance of the servlet class
c. Initializesthe servlet instance by calling thei ni t method.
2. Invokestheservi ce method, passing a request and response object.

If the container needs to remove the servlet, it finalizes the servlet by calling the servlet's
dest r oy method.

You can monitor and react to events in a servlet's life cycle by defining listener objects
whose methods get invoked when life cycle events occur. To use these listener objects
you must define and specify the listener class.

Any number of exceptions can occur when a servlet is executed. The web container will
generate a default page containing the message A Servl et Exception Has Cccurred
when an exception occurs, but you can also specify that the container should return a
specific error page for a given exception.

188

Java Network Programming

11.3. Developing Servlets

11.3.1. Downloading and Installing Servlets

To use servlets, you should download the J2SE 1.3, which is available from the Sun
Microsystem’s Web site: http://java. sun.com j2se/ 1.3/ and the java serviet
classes, available from http://java. sun. con product s/ servl et/ downl oad. ht ni .
Y ou also need aweb server capable of executing servlets. One of such aweb server isthe
tomcat web server written in java and is avalable from the link
http://jakarta. apache. org/ site/binindex. htm . You simply select the archive
that suits your operating system to download.

To install the java servlet extension classes, you need to uncompress the downloaded
archive and copy the serviet.jar to your library extensions folder. The extensions library
folder is usually found under your JDK's jre folder. For example on a Linux installation
the folder isfound at /usr/javaljdk1.3/jrellib/ext/. Simply copy the filesto this directory is
all that is required.

To install tomcat, you need to uncompress the archive and copy it to afolder, for example
"c:\toncat" on windows and "/ var/toncat" for Unix/Linux. Set the environment
variable TOVCAT_HOVE to point to your tomcat folder. Under windows this would be

set TOMCAT_HOVE=c:\t ontat
and under Unix/Linux would be
export TOMCAT_HOVE=/var/tontat

(or an equivalent shell command). Next, you need to set the JAVA_HOMVE environment
variable in the same manner to point to your JDK's folder. With the environment
variables correctly set you can start and stop the server using the startup and shutdown
scripts under the bin directory. (*.sh for Unix, *.bat for Windows)

The installation can be checked by opening a web browser and opening the page
http://1ocal host: 8080/ where you should get the default tomcat page and some
examples.

11.3.2. Basic Techniques for Using Servlets

Section 26.3 of [HSH] provides basic information about what is needed to begin
developing and testing servlets and section 26.14, section 25.22, and section 26.23
provide a number of simple serviet examples. Students are required to understand the
basic steps in developing servlets applications and the working principles of the
examples.

11.3.3. More Examples in using Servlets

Chapter 27 of [HSH] provides a number of advanced examples of servlets in action. It
includes techniques for maintaining persistence data in servlets; a servlet example for
counting the number of get accesses made to the servlet over its lifetime; techniques of
using servlets to implement collaborative applications over the Internet; and an

189

Java Network Programming

application of distributed list implemented using servlets. Students are required to
understand the working principle of these examples.

11.4. Java Beans

Java Beans (as well as ActiveX and OpenDoc) supports the notion of an application
component model. A component model enables severa different kinds of programmer
parts to work together. By developing reusable components, you can preserve the effort
you placed into software development by packaging them in modules that you can
publish to others.

A “Bean” is a component made up of severa other objects. By putting them all in one
place, with awell-defined interface to the group, you can give them out to others to reuse.
Beans brings object-oriented programming and Java into next big wave of computing:
components.

11.4.1. Introduction of the Component Model

A software component is aunit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed
independently and is subject to composition by third parties. Every component must
have a well-defined standard interface or a set of standard interfaces and open
Application Programming Interfaces (API) so it can be successfully used in a plug and
play environment.

Components encapsulate semantically meaningful application or technical services and
offer standard interfaces. In contrast to more conventional uses of components, e
commerce components require more attention to the issues of security, reliability,
standards, and interaction. The leading component-based software development
methodoligies are OMG's CORBA, Sun's JavaBeans and Microsoft's DCOM (Distributed
Component Object Model) and ActiveX.

A framework for building component-based software should contain at least the
following four e ements:

e Objects: Objects are the minimum building blocks of components viewed from the
component-based programming point of view. Each object has a unique identity, a set
of data structures that can be used to hold the state of the object, and a set of
operations that can be used to manipulate the data stored in the object’ s data structure.
An object cannot exist by its own as a useful program.

» Components. Components are independent software entities possess some program
logic, ranging from small graphical user interface widgets such as buttons to complex
components such as stock ticker display, to full-size applications such as word
processors and spreadsheets.

» Contaners. Containers are software entities used to assemble components. They
provide a context in which components interact and may be arranged. Containers can
be nested within other containers.

190

Java Network Programming

* Glues: Glues are scripting languages used to initiate and direct interactions between
components and objects. They are used to describe the relationships among objects
and components and to assemble objects and components into larger components or
even applications within a container.

Figure 11.1. shows the use of components and containers.

= Contaimer
L.ontamer

Caontainer

Container r ~
~Omponent Component

o]
Component
Camponent

Figure 11.1. Components and containers.

It is essentia to understand the following issues in building a framework for component-
based programming:

* How to define and describe objects, components, and contai ners?
* What are the relationships among these elements?
* How to provethat aparticular glue of certain objects and componentsis correct?

The framework for building component-based systems should provide at least the
following essentia services: component publishing and discovery service, event handling
service, and an assembly line.

e Component publishing and discovery service: When a component is created or is
placed in a container, it needs to identify itself and the interfaces it supports. The new
component registers or publishes its existence and interfaces with the framework. As
a consequence, other components learn through the discovery facility of its existence
and how to interact with it. A number of questions must be answered to create such a
service. For example, how to express and classify the information about components?
How to store, update, and retrieve information about components? Will the service be
centralised or distributed?

» Event handling service: Objects and components communicate with each other
through messages. An object or a component raises or broadcasts a message or an
event, and the framework is responsible for delivering the message to the appropriate
objects or components. Messages may be generated by the system itself, for example,
by a click of the mouse; or they may be generated by other objects, such as when a
database record is changed. A number of research issues are associated to this service.
For example, how to express events? How to effectively and efficiently raise and
capture events in a Web-based environment? How to effectively handle events?

* An assembly line: Components can be assembled during run-time, or during
development period. In both cases, an assembly line is required to perform the job.
The assembly line enables objects and components to expose their properties and

191

Java Network Programming

behaviours to development tools or other components. The assembly line can provide
mechanisms such as inspectors, editors, and debuggers for assembling components
into applications. Many research issues are also associated to the development of the
assembly line. For example, what scripting language(s) should be used during the
assembly process? How do we know an assembly is correct? If there exist different
assembly approaches, how can we select the one that will result in the most efficient
component or application?

11.4.2. Overview of Beans Component Model

Every “Bean” should provide each of five different services designed to promote
interaction between one another:

* Interface publishing

* Event handling

» Persistence

* Layout

e Builder support.

In order to enable one Bean to make another Bean do something, the Beans must have a
published and pre-defined set of routines. When several Beans join together, they form a
Java Beans application.

The component Beans of a Java Beans application must publish their interfaces to the
container Bean application so that any Bean within the application can acquire a
reference to a component. Other components may invoke the Bean and use it as it were
intended.

Beans must be able to pass events to one another. A Beans application may have severa
applets. When something happens to one applet, the other applets may want to know.
Beans components can be made to talk to one another and trigger events in each other.
The powerful components model on top of which Beans was developed promotes the
idea of object separation.

Persistence moves applications from a session-based paradigm in which objects are
started, exist for alittle while, and the disappear, to a lifecycle-based paradigm in which
objects are started and exist for a little while. This time, however, instead of the object
disappearing, it is saved, restored, and allowed to exist again afterwards. Java Beans
supports persistence primarily through object serialization.

The Beans framework provides a set of routines to effectively lay out the various parts so
that they don’t step on one another. The layout mechanism aso alows the sharing of
resources. The Beans layout mechanism alows you to position your Beans in rectanglar
areas. The programmer is left to decide whether the regines overlap or maintain a discrete
layout space.

The builder support in Beans provides a way that other builder applications can obtain a
catalog of methods used by your Bean application, aswell as proper means to access each
individual Bean.

192

Java Network Programming

11.4.3. Downloading and Installing the BDK

The JavaBeans Development Kit (BDK) is freely available from the JavaBeans home
page, located at http://java.sun.com/products/javabeans/software/bdk _download.html.

The BDK provides severa examples of JavaBeans, a tutorial, and supporting
documentation. But most important, it provides a tool, referred to as the BeanBox, that
can be used to display, customize, and test the beans that you'll develop. The BeanBox
also serves as a primitive visual development tool. You'll use the BeanBox to see the
important aspects of visua component-based software development as it applies to
JavaBeans. Download and install the BDK before continuing on to the next section. Once
you've installed the BDK, restart your system to make sure that all installation changes
take effect.

In the following section we assume that the BDK isinstalled in directory of c: \ bdk1. 1\ .
11.5. Using Java Beans

11.5.1. Using the BeanBox

The BeanBox of the BDK is an example of a simple visual development tool for
JavaBeans. It islocated in the c:\bdk\beanbox directory. Change to this directory and start
the BeanBox asfollows:

c:\ bdkl. 1\ beanbox>r un

The BeanBox application loads and displays four windows labeled ToolBox, BeanBox,
and PropertySheet, and MethodBox.

You should be impressed by how easy it was to develop an interesting (or at least
entertaining) application using the BeanBox and JavaBeans. In fact, you didn't have to
write asingle line of code to create the application. That's the power of component-based
software development. Given a good stock of beans, you can quickly and easily assemble
alarge variety of useful applications.

Figure 11.2 shows the four initial windows of DBK.

193

Java Network Programming

[f= ToolBox WA (=] B(] [f=36eanBon

File Edit ‘iew Servic

BlueButton
,,,
background
OrangeButton

OurButtan
fareground
(B epicitauttan
EventMonitor s panell
@ JeiyBean
‘a-,Juggler fant Abcde .

TickTadk
Woter
ChangzRepartar

Molecule Fe4Method Tracer

method fracing semvice started

Quotehanitor
JDBC SELECT
SorterBean

;;;

Figure 11.2. Theinitia windows of DBK

The ToolBox window contains a list of available Java beans. These beans are
components that can be used to build more complex beans, Java applications, or applets.
Visua software development tools, such as the BeanBox, alow beans to be visualy
organized by placing them at the location where you want them to be displayed. For
example, by clicking the Juggler bean in the ToolBox window and then clicking in the
BeanBox; the Juggler bean will be placed in the BeanBox, as shown in Figure 11.3.

When the Juggler bean is placed in the BeanBox, other windows will display
corresponding information about the Juggler bean. For example, the PropertySheet is
updated to display the properties of the Juggler bean. Y ou can customize the Juggler bean
by changing its properties. For example, changing the animationRate property to 500, the
Juggler will juggle slower than before.

Now let us add a Start and a Stop buttons to the BeanBox to control the animation. First,
we select an OurButton bean in the ToolBox and then place it in the BeanBox. A button
labeled Pressis displayed. Use the button's property sheet to change its label to Start. Use
the same method to create a second button labeled Stop.

Second, we connect the Start button's actionPerformed() event handler to the
startduggling() method of the Juggler bean and the Stop button's actionPerformed() event
handler to the stopJuggling() method of the Juggler bean. To do this, we click the Start
button and then select Edit | Events | Action | ActionPerformed from the BeanBox menu
bar. A red line is now shown emanating from the Start button. This line represents a
logical connection from the Start button's actionPerformed() event handler. Click the
Juggler bean to close the connection. When you do, the EventTargetDialog box, shown in
Figure 11.4, is displayed. This dialog box lists the interface methods of the Juggler bean.
Select startJuggling. By doing so, you connect the clicking of the Start button to the
startduggling() method via the actionPerformed() event handler of the Start button bean.

194

Java Network Programming

The EventTargetDialog box notifies you that it is compiling an adapter class. The
BeanBox creates a specia class, referred to as an adapter class, to connect the clicking of
the button with the startJuggling() method of the Juggler. It must compile this class and
add it to the running BeanBox to support this connection. You can use the same method
to connect the Stop button to the stopJuggling() method of the Juggler bean.

E%;Beanﬂnx =] 3
File Edit “iew Services Help

;;;;;;;;;;;;;;;;;;

BlueButton

debug IFa\se -

124

OrangeButtan

OurButten 0 Q

E‘ ExplicitButton
Eventhanitor M

OJeIIyBean

"&,Juggler ‘IIA]

TickTack W rerssrsrrrsssrrrrs

animationRate

A I panell

T T Ty

LY

Woter

ChangeReporter

olectle \:a Method Tracer

S nethod tracing service started.

JDBC SELECT e hethod Tracing service requested by
SorterBean class sunw.demo juggler Juggler

BridgeTester

e

Figure 11.3. Adding the Juggler bean into the BeanBox

Figure 11.4 shows the process and result of the example event handling. Now you can
have some fun with the Juggler. Click the Stop button to stop the juggling and click the
Start button to get it going again.

fsiBeantox E =100 x| =10/ %]
File Edit “iew Services Help File Edit “iew Services Help

P R R R R PR R R R R IR F R R IR R FIFSIFFIFFIRFIRFSIFERF,
L

E%EventTargetDialog

ATTAETLATERLLRLRERRERERLR
AELEELLLEREEERLERLEREELRE

Cancel | Ok |

Figure 11.4. Event handling

Beans, being primarily GUI components, generate and respond to events. Visua
development tools provide the capability to link events generated by one bean with event-

195

Java Network Programming

handling methods implemented by other beans. For example, a button component may
generate an event as the result of the user clicking on that button. A visual devel opment
tool would enable you to connect the handling of this event to the interface methods of
other beans. The bean generating the event is referred to as the event source. The bean
listening for (and handling) the event isreferred to as the event listener.

11.5.2. Beans by JavaSoft and IBM

Since the debut of JavaBeans, thousands of beans have been developed. Hundreds of
these beans are available as off-the-shelf Java components. the JavaBeans Directory
located at http://www.javasoft.com/beans/directory/ have links to many of these beans.

One of the most powerful bean sets on the market is the HotJava HTML Component
from JavaSoft. This product consists of several beans that can be used to add Web-
browsing support to window applications. It parses and renders HTML files that are
loaded from the Web and includes the following features:

e HTML 3.2 support

e HTTP 1.1 compatibility

e Frames and tables support

* Theability to use cookies

e Multimedia support

* JARfile support

* Implementation of the FTP, Gopher, SMTP, and SOCKS protocols

A tria version of the HotJava HTML Component can be found from the link:
http://java.sun.com/products/hotjava/bean/index.html.

IBM is one of the most committed developers of beans. It has created dozens of handy

beans and makes them available through its fine Java software development tools. In

particular, the WebRunner Toolkit includes a number of beans that are great for building

applets and window applications. Some of the beans available through the WebRunner

Toolkit include the following:

* A collection of Network Beans that support the FTP, NNTP, SMTP, and POP3
protocols

e User interface beans including a MultiColumnListbox bean, a ProgressBar bean, and
a Charting bean

e A DatePicker bean that provides full calendar support

* A MaskedTextField bean for controlling use input

A sat of Gauge beans that were designed by IBM's Human-Computer Interaction
Strategy and Design Lab

The link of http://www.software.ibm.com/ad/webrunner/WRBeans.html has the rial
versions of these beans.

11.5.3. Assembly of Beans

The goa of bean-based software development is to use beans to quickly and easily
assembl e applets and applications. To accomplish this, you need a suitable collection of
beans and an approach to integrating them into your programs. The InfoBus, developed

196

Java Network Programming

by Lotus Development Corporation and JavaSoft, provides a mechanism for bean
integration. InfoBus supports a standard interface for communication between beans and
allows information to be exchanged between beansin a structured way.

Normally, al beans that are loaded from the same classloader are visible to each other.
Beans can find each other by searching the container-component hierarchy or their bean
context. They can then use reflection and design patterns to determine which services are
provided by other beans. However, this approach is often cumbersome and prone to error.
The software engineers at Lotus Development Corporation and JavaSoft recognized that
a standard approach to data exchange between beans was needed and collaborated to
simplify inter-bean communication. The InfoBus is the result of this effort.

The InfoBus is analogous to a PC system bus. Data producers and consumers connect to
an InfoBus in the same way that PC cards connect to a PC's system bus. Data producers
use the bus to send data items to data consumers. The InfoBus is asynchronous and
symmetric. This means that the producer and consumer do not have to synchronize to
exchange data, and any member of the bus can send data to any other member of the bus.

The InfoBus operates as follows:

* Beans, components, and other objects join the InfoBus by implementing the
InfoBusMember interface, obtaining an InfoBus instance, and using an appropriate
method to join the instance.

» Data producers implement the InfoBusDataProducer interface, and data consumers
implement the InfoBusDataConsumer interface. These interfaces define methods for
handling events required for data exchange.

» Data producers signa that named data items are available on an InfoBus object by
invoking the object's fireltemAvailable() method.

» Data consumers get named data items from an InfoBus object by invoking the
requestDataltem() method of the InfoBusltemAvailableEvent event received via the
InfoBusDataConsumer interface.

This list summarizes the typical usage of the InfoBus. However, the InfoBus is flexible
and provides additional usage options, which you'll learn about in the next section. The
advantage of InfoBusisthat it eiminates the need for inference and discovery on the part
of beans. Instead, it provides a standard, structured mechanism for named data items to
be exchanged.

197

Java Network Programming

12. Network Security
12.1. Study Points

* Understand the basic concepts of a secure network.

» Understand the principles of aprivate key encryption and a public key encryption.
» Understand the concepts of digital signatures, packet filters, and firewalls.

* Understand the Java security model.

» Befamiliar with the secure sockets.

References: [INP] Chapters 3, 12. [FAR] Chapter 5. [Java2U] Chapter 8.

12.2. Secure Networks

12.2.1. What is a Secure Network?

A work on any types of networking is not complete without a discussion on network
security. Networks cannot be simply classified as secure or not secure since the term of
“secure” is not absolute: each group of users may define the level of security differently.
For example, some organizations may regard the stored data as valuable and require that
only authenticated users gaining access to these data. Some organizations allow outside
users to browse their data, but prevent the data to be altered by outside users. Some
organizations may regard the communication as the most important issue in network
security and require that the messages be kept private and that the senders and recipients
be authenticated. Yet many organizations need some combinations of the above
requirements. Therefore, the first step for an organization to building a secure network is
to define its security policy. The security policy specifies clearly and unambiguously the
items that are to be protected.

A number of issues need to be considered in defining a security policy. They include the
assessment of the values of information within an organization and the assessment of the
costs and benefits of various security policies. Generally speaking, the following three
aspects of security can be considered:

» Dataintegrity: it refersto the correctness of data and the protection from changes.
o Dataavailability: it refers to the protection against disruption of services.
» Data confidentiality and privacy: they refer to the protection against snooping or
wiretapping.
12.2.2. Integrity Mechanisms and Access Control

The techniques used to ensure the integrity of data against accidental damage are the
checksums and cyclic redundancy checks (CRC). To use such techniques, a sender
compute a small, integer value as a function of the data in a packet. The receiver re-

198

Java Network Programming

computes the function from the data that arrives, and compares the result to the value that
the sender computed.

However, the checksums or the CRC cannot absolutely guarantee data integrity. For
example, a planned attacker can alter the data and then can create a valid checksum for
the altered data

The password mechanism is used in most computer system to control access to resources.
This method works well in a conventional computer system but may be vulnerable in a
networked environment. If a user at one location sends a password across a network to a
computer at another location, anyone who wiretaps the network can obtain a copy f the
password. Wiretapping is easy when packets travel across a LAN because many LAN
technologies permit an attached station to capture a copy of al traffic. In such a situation,
additional steps must be taken to prevent passwords from being reused.

12.3. Data Encryption

12.3.1. Encryption Principles

Encryption is a method that transforms the information in such a way that it cannot be
understood by anyone except the intended recipient who possesses a secret method that
makes it possible to decrypt the message. Figure 12.1 depicts the encryption process.

Zecolity exchange
/ of key, k& \
P Encrypt o E
Sendet Ciphet text, "C‘FP“ Recipien
fik. p) ik,

Figure 12.1. Single (private) key encryption

The two most popular private key techniques are DES (Data Encryption Standard) and
IDEA (International Data Encryption Algorithm). The problem with the above scheme is
the secured exchange of the key k: how can we be sure the key is known by both parties
at the first place? A key distribution server sometimes is used to supply secret keys to
clients. Figure 12.2 illustrates an example of key distribution server. Here user A needsto
communicate with user B. A key is needed for both parties.

199

Java Network Programming

Process acting for A

HKey distribution server
Sends loken T1, & and B T1,4,B
Wlakes new key K,
fIKA, (KAB+TIHKE, (K+A))) Sends Kand encrypled
memage fol B
Sends Kand & KB, [K+a))
encrypled with KB
fIX, T2) Sends lokeh T2
chotypled with K
Sends T2-1 fIK, T2-1)
encrypled with K

Process acting for B

Figure 12.2. Key distribution server

A well known encryption method is the public key encryption. It uses two different keys
(encryption key Ke and decryption key Kg), Ke is known to the sender and Ky the
recipient. K, can be made known publicly for use by anyone who wants to communicate,
while Kq is kept secret. The RSA (after its inventors Rivest, Shamir, and Adleman)
technique is one of the most popular public key encryption techniques and is based on the
difficulty of factoring large numbers.

Here is an example: A (the Receiver) requires some secret information from B (the
Sender). A generates a pair of keys Ke and Kqy. Kq is kept secret and Ke is sent to B. B uses
c = E(Ke, p) toencrypt the message and sends c to A. A then decrypts the message ¢
usingp = D(Kd, c). Fgurel2.3 depictsthisprocess.

Zends public key Ke via nelwork

P Enciypt \\\ Crect: p
.— Ciphet et ectypt
@ E(Ke, p) ki / DIKd, ¢}

Kd is seciet

Figure 12.3. Public key encryption

12.3.2. Decryption
Many institutions and individuals read data that is not intend for them. They include:

* Government agencies. Traditionally governments around the world have reserved
the rights to tape into any communication they think may be against the national
interests.

200

Java Network Programming

* Spieswho tap into communication for government and industry information.
e Individuals who like to read other people’ s messages.
* Individuals who hacks into systems and read sensitive information.

e Criminals who intercept information in order to use it for crime, such as
intercepting PIN numbers on back accounts.

For example, the US government has proposed to beat encryption by trying to learn
everyone's encryption key with the Clipper chip. The US government keeps a record of
all the series numbers and encryption keys for each Clipper chip manufactured.

No matter how difficult an encryption is, every code is crackable and the measure of the
security of a code is the amount of time it takes persons not addressed in the code to
break the code. Normally to break a code, a computer tries all the possible keys until it
finds the match. Thus a 1-bit code only has two keys. A 2-bit code would have 4 keys,
and so on. For a 64-bit code it has 18,400,000,000,000,000,000 different keys. If one key
is tested every 10ps, then it would take 1.84* 10 seconds (or 5,834,602 years).

However, as the improvement of computer power and techniques in parallel processing,
the time used to crack a code may decrease dramatically. For example, if we think 1
million years would be safe for a code and we assume an increase of computer power of a
factor of 2 every year, then it would take 500,000 years the next year. The same code
would then be cracked in 1 year after 20 years. If we use parallel processing technigques
then the code would be cracked much sooner.

12.4. Security Mechanismson the I nternet

12.4.1. Digital Signatures

Digital signatures are widely used on the Internet to authenticate the sender of a message.
To sign a message, the sender encrypts the message using a key known only to the
sender. The recipient uses the inverse function to decrypt the message. The receiver
knows who sent the message because only the sender has the key needed to encrypt the
message. A public key technique can be used in such a situation.

To sign a message, a sender encrypts the message using the private key. To verify the
signature, the recipient looks up the user’s public key and uses it to decrypt the message.
Because only the user knows the private key, only the user can encrypt a message that
can be decoded with the public key.

Interestingly, two levels of encryption can be used to guarantee that a message is both
authentic and private. First, the message is signed by using the sender’s private key to
encrypt it. Second, the encrypted message is encrypted again using the recipient’s public
key. Here is the expression:

X = encrypt (public-rec, encrypt(private-sen, M)

Where M denotes a message to be sent, X denotes the string results from the two-level
encryption, private-sen denotes the sender’s private key, and public-rec denotes the
recipient’s public key.

201

Java Network Programming

At the recipient’s side, the decryption process is the reverse of the encryption process.
First, the recipient uses the private key to decrypt the message, resulting adigitally signed
message. Then, the recipient uses the public key of the sender to decrypt the message
again. The process can be expressed as follows:

M = decrypt (public-sen, decrypt(private-rec, X))

Where X is the encrypted message received by the recipient, M is the original message,
private-rec denotes the recipient’s private key, and public-sen denotes the sender’ s public

key.

If a meaningful message results from the double decryption, it must be true that the
message was confidential and authentic.

12.4.2. Packet Filtering

To prevent each computer on a network from accessing arbitrary computers or services,
many sites use a technique known as packet filtering. A packet filter is a program that
operates in arouter. The filter consists of software that can prevent packets from passing
through the router on a path from one network to another. A manager must configure the
packet filter to specify which packets are permitted and which should be blocked. Figure
12 4 illustrates such afilter.

Metworl: 1 Metworl: 2

| B = |]
B EiEEE — EEES

Paclzet filter in router

Figure 12.4. Packet filter in arouter

A packet filter is configured to examine the packet header of each packet in order to
decide which packets are alowed to pass through from one network to another. For
example, the source and destination fields of a packet are examined to determine the if
the packet is to be blocked or not. The filter can also examine the protocol of each packet
or high-level servicesto block the access of a particular protocol or service For example,
a packet filter can be configured to block all WWW access but to alow for email packets.

12.4.3. Internet Firewall

A packet filter can be used as afirewall for an organization to protect its computers from
unwanted Internet traffic, asillustrated in Figure 12.5.

202

Java Network Programming

Organisation’s
network

& packet filter 13 used as a firewall to
protect an organization’ s network
from unwanted Internet traffic

Figure 12.5. Internet firewall

Like a conventiond firewall, an Internet firewall is designed to keep problems in the
Internet from spreading into an organization’s computer network. Without a firewall, an
organization has to make al its computers secure to prevent unwanted Internet traffic.
With a firewall, however, the organization can save money by only install the firewall
and configure it to meet the requirements.

12.5. Java Secure M odd and the Security API

12.5.1. The JDK 1.2 Security Architecture and Security Policy Specification

JDK 1.2 introduces a security architecture for implementing the security principle of least
privilege. This principle states that an application should be given only those privileges
that it needs to carry out its function and no more. According to least privilege, trusted
applets and applications should be limited in the privileges they are allowed. This
architecture is based on the capability to specify a security policy that determines what
accesses an applet or application is alowed, based on its source and on the identities of
those who have signed the applet on application code.

The security policy feature of JDK 1.2 allows you to specify the following types of
policies easily and without programming:

e Grant all applets from http://www.trusted.com/ permission to read files in the C:\tmp
directory.

» Grant al applets (from any host) permission to listen on TCP ports greater than 1023.

e Grant al applets signed by Mary and Ted (hypothetical Java programmers) that are
from http://www.trusted.com permission to read and write to files in the C:\tmp
directory.

» Grant al applications loaded from the C:\trusted directory permission to set security
properties

Specifying a custom security policy is easy to do. All you have to do is edit the
appropriate policy configuration file. JDK 1.2 provides you with a number of ways to do
this:

203

Java Network Programming

* You can create or edit the default system policy file located at <java.home>\lib\
security\java.policy, where <java.home> identifies the location of your JDK 1.2
installation. It is specified by the value of the java.home system property. By default,
javahome is C:\jdk1.2. If you edit java.policy, the new policy will apply to al users
of your JDK 1.2 installation.

* You can set the value of the policy.java system property to the name of an alternative
security policy file.

* You can create or edit the user policy file located at <user.home>\.java.policy, where
<user.home> identifies the current user's home directory. It is specified by the value
of the user.home system property.

* You can set the value of the java.security.policy property to a different user security
policy file using the -D command-line option. For example, suppose that you want to
run the Test class using the test.policy user security policy file. You could use the -D
option as follows:

java -Djava. security.policy=="test.policy" Test

* You can also use the -Djava.security.manager option to ensure that the policy is
installed. The double equal sign specifies that the policy should be the only policy
that isin effect. A single equa sign specifies that the policy is added to the current
policy that isin effect.

* You can change the class used to implement the security policy from java
security.PolicyFile to another class by editing the java.security file located at
<java.home>\lib\security\java.security. Change the line
policy.provider=java.security.PolicyFile to policy.provider=OtherClass, where
OtherClassis the fully qualified name of the class to be used.

When the Java byte code interpreter is run, it loads in the system policy followed by the
user policy. If neither of these policiesis available, the original sandbox policy is used.

Y ou can also use the -Djava.security.manager option to ensure that the policy isinstaled.
The double equal sign specifies that the policy should be the only policy that is in effect.
A single equal sign specifiesthat the policy is added to the current policy that isin effect.

12.5.2. The ClassLoader and the SecurityManager

Java provides two levels of security: low-level intrinsic security and resource-level
security. Java sintrinsic security relates to the integrity of the bytecodes that come across
the network, and consists of a bytecode verifier and a ClassLoader. The verifier attempts
to make sure that incoming bytecodes do not perform illegal type conversions, memory
accesses, and other similar forbidden activities. The ClassLoader partitions the name
spaces of classes loaded from across the network and prevent collisions related name
resolution problems. The ClassLoader also ensures that local classes are loaded first to
prevent spoofing of system classes. On top of this, Java provides resource access
restriction through a SecurityManager class.

204

Java Network Programming

Students are required to read through Chapter 2 of the text book to understand the Java
Security Model, paying particular attention to the SecurityManager and the networked

applets.

Y ou can use the following methods from java.lang.SecurityManager to check how much
network access you'll have:

public void checkConnect (String host, int port)
public void checkConnect (String host, int port, Cbject context)
public void checkListen(int port)
public void checkAccept (String hostname, int port)
public void checkMilticast (I net Address naddr)
public void checkMil ticast(lnet Address maddr, byte ttl)

Each of these methods throws a SecurityException (which is a runtime exception so it
doesn't need to be declared) if the requested operation is not permitted. For example, to
check whether you're allow to open a socket to port 80 of www.deakin.edu.au you would
write:

try {
SecurityManager sm = SecurityManager. get SecurityManager();

if (sm!=null) smcheckConnect ("ww. deaki n. edu. au", 80);
/1 open the socket...

catch (SecurityException e) {
Systemerr.printin("Sorry. I'mnot allowed to connect to that host.");

}

checkConnect() tests whether a socket connection is allowed. checkListen() tests whether
binding to a particular port is allowed. checkAccept() tests whether you can accept a
connection from a particular remote host and port. checkMulticast() tests whether
multicasting is alowed.

12.5.3. Using Java Security API: An Example

The client reads a file, generates a pair of key, signs the content of a file and send an
object through the network to a server. This object contains the public key generated by
the client, the signature, and the content of the file. The server then receives this object,
and verifies that the signature is correct.

This example may be a good starting point to understand for example how a SSL browser
works, and how the Java Security APl may be used in client-server applications.

There are 4 files: Client.java, Main.java, Server.java, signedDatajava.

The client class creates a pair of key (512 bytes) and a signature object. This Signature
class is used to provide the functionality of a digital signature algorithm, such as RSA
with MD5 or DSA. Here we use the DSA algorithm.

Then, it reads the file supplied on the command line and computes a digital signature. A
signedData object is created with the content of the file, the client's public key and the

205

Java Network Programming

digita signature.

ObjectOutputStream.

/[* Client.java */
i nport java.net.*;
i nport java.io.*;
i mport java.security.*;

class dient {
public static void main(String [] argv)

{

}
}

try {

Socket s=new Socket ("I ocal host", 4096) ;

System out.println("Generating keys...");

Ohj ect Qut put St r eam oos=new Obj ect Qut put Strean(s. get Qut put Stream());
/| Gener at es keys

KeyPai r Gener at or keyGen = KeyPai r Cener at or. get | nstance("DSA") ;
keyGen.initialize(512);

KeyPair pair = keyGen. generateKeyPair();

Systemout. println("Keys generated.");

/| Gener ates signature object

Si gnature dsa = Signature.getlnstance("SHA DSA");
Publ i cKey pub=pair.getPublic();

PrivateKey priv=pair.getPrivate();
dsa.initSign(priv);

System out. println("Signature object generated.");

/I Read the input file and conputes a signature
FilelnputStreamfis = new Fil el nput Stream(argv[0]);
byte[] b=new byte[fis.available()];

fis.read(b);

dsa. updat e(b) ;

//Build the signedData and send it

si gnedDat a Dat a=new si gnedDat a(b, dsa. si gn(), pub);
Dat a. pri ntKey();

00s. witeCbject(Data);

/1 Cl ose streans
fis.close();
00s. cl ose();
s.cl ose();

} catch (Exception e) {Systemout.println(e);};

The main class smply starts the Server that listens on a port (4096).

/* Main.java */
i nport java.net.*;
i mport java.io.*;

class Main {

public static void main(String [] argv)

try {
Server s=new Server();

s.start Server();
} catch (1 Oexception e) {};

206

It's then sent to the server using seridization through an

Java Network Programming

}

The Server class waits for an incoming connection using a ServerSocket. When a
connection is made, it reads a signedData object from the stream, and computes a digital
signature using the client's public key to verify that the file transmitted from the client is
valid.

/* Server.java */
i mport java.net.*;
i nport java.io.*;
i nport java.security.*;

class Server inplenents Runnabl e

{

Server Socket server=nul|;
Socket data=null;

Thread t=null;

KeyPai r Gener at or keyGen;
KeyPai r pair;

public synchronized void startServer() throws | OException {
if (t==null)
{
server=new Ser ver Socket (4096) ;
t=new Thread(this);
t.start();
}
}

public synchroni zed void stopServer() throws | OException {
if (t!=null)
{
t=nul|;
server.cl ose();
}
}

public void run()
{
Thread thi sThread=Thread. current Thread();
System out . println("Ready to accept connections.");
while (t==thisThread) {
try {
Socket data=server.accept();
process(data);
} catch(Exception e) {}

}
}
private void process(Socket data) throws | OException
{

Systemout. println("Accepting connexion...");

try {

bj ect | nput St ream oi s=new Obj ect | nput St r ean(dat a. get | nput Stream());

// Read the object fromthe network
si gnedDat a Dat a=(si gnedDat a) oi s. readCbj ect () ;

/| Generate the signature object

Signature dsa = Signature.getlnstance("SHA DSA");
dsa.initVerify(Data. pub);

207

Java Network Programming

dsa. updat e(Dat a. b) ;

/IVerify the signature

Dat a. pri ntKey();

bool ean verifies = dsa.verify(Data.sig);

Systemout.println(verifies?"Signature is correct!":"Signature not
valid!'");

oi s.close();
dat a. cl ose();

} catch (Exception e) {Systemout.printlin(e);}

}

The following signedData class is sent through the network from the client to the server.
It contains an array of byte, adigital signature, and a public key.

/* signedData.java */
i mport java.io.*;
i nport java.security.*;

public class signedData inplenments Serializable
{

byte[] b;

byte[] sig;

Publ i cKey pub;

signedDat a(byte b[],byte [] sig , PublicKey pub) {
this. b=b;
this.sig=sig;
thi s. pub=pub;

}

void printKey() {
Systemout. println("Key dunmp:");
System out . printl n(pub);
}
}

Here is the execution result of the server:

>Java Main test.txt
Ready to accept connections.
Accepting connexion..
Key dunp:
Sun DSA Public Key
Par amet er s: DSA

p: fca682ce 8el2caba 26efccf7 110e526d b078b05e decbcdle b4a208f3 ael6l7ae
01f 35h91 a47e6df6 3413c5el 2ed0899b cdl32acd 50d99151 bdc43ee7 37592el7

q: 962eddcc 369chba8e bb260ee6 b6al26d9 346e38c5

g: 678471b2 7a9cf44e e91a49c5 147dbla9 aaf 244f 0 5a434d64 86931d2d 14271b9e

35030b71 fd73dal7 9069b32e 2935630e 1c206235 4d0da20a 6c416e50 be794ca4

y:
ch40d181 09abl5e5 60ae95f 3 6b49f 109 clbe351b d194ca87 0ce9d153 d553235f
1084f d3b 81658bf0 2dd737a0 ed6029db 378a9e8c a875c62e ladedc96 fdd70a28
Signature is correct!

Here is the execution result of the client:

>java Client test.txt
Cenerating keys...
Keys generat ed

208

Java Network Programming

Si gnat ure obj ect generated
Key dunp:
Sun DSA Public Key
Par anet ers
p: fca682ce 8el2caba 26efccf7 110e526d b078b05e decbcdle b4a208f3 ael6l7ae
01f 35b91 a47e6df 6 3413c5el 2ed0899b cdl32acd 50d99151 bdc43ee7 37592el7
q: 962eddcc 369cha8e bb260ee6 b6al26d9 346e38c5
g: 678471b2 7a9cf44e e91ad49c5 147dbla9 aaf 244f 0 5a434d64 86931d2d 14271bh9%e
35030b71 fd73dal7 9069b32e 2935630e 1c206235 4d0da20a 6c416e50 be794ca4d

y
ch40d181 09abl5e5 60ae95f 3 6b49f 109 clbe351b d194ca87 0ce9d153 d553235f
1084f d3b 81658bf 0 2dd737a0 ed6029db 378a9e8c aB875c62e ladedc96 fdd70a28

12.6. Secure Sockets

One of the consumer fears of buying goods over the Internet is that some hacker will sted
the credit card details when the information is transmitted. In reality, the risk of a hacker
grabbing credit card information during message transmission is much less than a shop
clerk stealing the credit card details from a receipt. All the cases in e-business related to
credit card thefts so far have been related to the poorly secured databases and files after
the credit card information has been successfully transmitted across the Internet.
Nonetheless, to make Internet connection more fundamentally secure, sockets can be
encrypted. This alows transactions to be confidential, authenticated, and accurate.

However, encryption is a complex subject. Finding good encryption and authentication
algorithms is a challenging work. Writing such software also needs highly skilled experts.
Also, such software is still subject to the arms control laws in the USA and other
countries. And consequently cannot be exported or imported freely. Therefore such
capabilities are not built into the standard java.net classes in JDK. Instead, they are
provided as a standard extension to the JDK called the Java Secure Socket Extension
(JSSE). This is an add-on for the JDK that secures network communications using the
Secure Sockets Layer (SSL) Version 3 and Transport Layer Security (TLS) protocols and
thelr associated algorithms. SSL is a security protocol to alow web browsers to talk to
web servers using various levels of confidentiality and authentication.

JSSE is the standard extension to Java 1.2. It allows you to create sockets and server
sockets that transparently handle the negotiations and encryption necessary for secure
communication. The JSSE is divided into four packages:

* javax.net.sd: the abstract classes that define Java's APl for secure network
communication.

* javax.net: the abstract socket factory class used instead of constructors to create
secure sockets.

* javax.security.cert: a minimal set of classes for handling public key certification
that’s needed for SSL in Java 1.1 (in Java 1.2 and later, the java.security.cert package
should be used).

e com.sun.net.ss: the concret classes that implement the encryption agorithms and
protocolsin Sun’s reference implementation of the JSSE.

209

Java Network Programming

None of these classes are included in the standard distribution of JDK. Before you can

use any of these «classes, you have to download the JSSE from
http://java.sun.com/products/jsse/.

210

