
Peer-to-Peer Networks
16 Hole Punching

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

NAT, PAT &
Firewalls

Peer-to-Peer Networks

2

Network Address Translation

§ Problem
- too few (e.g. one) IP addresses for too many hosts in a local

network
- hide hosts IP addresses from the outer world

§ Basic NAT (Static NAT)
- replace internal IP by an external IP

§ Hiding NAT
- = PAT (Port Address Translation)
- = NAPT (Network Address Port Translation)
- Socket pair (IP address and port number) are transformed
- to a single outside IP address

§ Hosts in local network cannot be addressed from
outside

3

DHCP Dynamic Host Configuration
Protocol

§ DHCP (Dynamic Host Configuration Protocol)
- manual binding of MAC address

• e.g. for servers
- automatic mapping

• fixed, yet not pre-configured
- dynamic mapping

• addresses may be reused

§ Integration of new hosts without configuration
- hosts fetches IP address from DHCP server
- sever assigns address dynamically
- when the hosts leaves the network the IP address may be reused by other hosts
- for dynamic mapping addresses must be refreshed
- if a hosts tries to reuse an outdated address the DHCP server denies this request
- problem: stealing of IP addresses

§ P2P
- DHCP is good for anonymity

• if the DHCP is safe
- DHCP is bad for contacting peers in local networks

4

Firewalls

§ Types of Firewalls
- Host Firewall
- Network Firewall

§ Network Firewall
- differentiates between

• external net
- Internet, hostile

• internal net
- LAN, trustworthy

• demilitarized zone
- servers reachable from the

external net

§ Host Firewall
- e.g. personal firewall
- controls the complete data traffic

of a host
- protection against attacks from

outside and inside (trojans)

§ Methods
- Packet Filter

• blocks ports and IP addresses
- Content Filter

• filters spam mails, viruses,
ActiveX, JavaScript from html
pages

- Proxy
• transparent (accessible and

visible) hots
• channels the communication

and attacks to secured hosts
- Stateful Inspection

• observation of the state of a
connection

§ Firewalls can prevent Peer to
Peer connections

- on purpose or as a side effect
- are treated here like NAT

5

Types of Firewalls & NATs (RFC 3489)

§ Open Internet
- addresses fully available

§ Firewall that blocks UDP
- no UDP traffic at all
- hopeless, maybe TCP works?

§ Symmetric UDP Firewall
- allows UDP out
- responses have to come back to the

source of the request
- like a symmetric NAT, but no translation

§ Full-cone NAT
- if an internal address is mapped to an

external address all packets will be sent
through this address

- External hosts can send packets to the
external address which are delivered to
the local address

§ Symmetric NAT
- Each internal request is mapped to a

new port
- Only a contacted host can send a

message inside
• on the very same external port

arriving on the internal port

§ Restricted cone NAT
- Internal address are statically mapped

to external addresses
- All such UDP packets of one internal

port use this external port
- All external hosts can use this port to

sent a packet to this host if they have
received a packet recently from the
same internal port (to any external port)

§ Port restricted cone NAT
- All UDP packets from one internal

address use the same external port
- External hosts must use this port to

sent a packet to this host if they have
received a packet recently from the
same internal port to the same external
port

6

Combination of NATs

7

Peer-to-Peer Communication Accross
Network Address Translators
Bryan Ford, Pyda Srisuresh, Dan Kegel

Peer-to-Peer Communication Across Network Address Translators

Bryan Ford

Massachusetts Institute of Technology

baford@mit.edu

Pyda Srisuresh

Caymas Systems, Inc.

srisuresh@yahoo.com

Dan Kegel

dank@kegel.com

J’fais des trous, des petits trous. . .

toujours des petits trous

- S. Gainsbourg

Abstract

Network Address Translation (NAT) causes well-known

difficulties for peer-to-peer (P2P) communication, since

the peers involved may not be reachable at any globally

valid IP address. Several NAT traversal techniques are

known, but their documentation is slim, and data about

their robustness or relative merits is slimmer. This paper

documents and analyzes one of the simplest but most ro-

bust and practical NAT traversal techniques, commonly

known as “hole punching.” Hole punching is moderately

well-understood for UDP communication, but we show

how it can be reliably used to set up peer-to-peer TCP

streams as well. After gathering data on the reliability

of this technique on a wide variety of deployed NATs,

we find that about 82% of the NATs tested support hole

punching for UDP, and about 64% support hole punching

for TCP streams. As NAT vendors become increasingly

conscious of the needs of important P2P applications such

as Voice over IP and online gaming protocols, support for

hole punching is likely to increase in the future.

1 Introduction

The combined pressures of tremendous growth and mas-

sive security challenges have forced the Internet to evolve

in ways that make life difficult for many applications.

The Internet’s original uniform address architecture, in

which every node has a globally unique IP address and

can communicate directly with every other node, has been

replaced with a new de facto Internet address architecture,

consisting of a global address realm and many private ad-

dress realms interconnected by Network Address Transla-

tors (NAT). In this new address architecture, illustrated in

Figure 1, only nodes in the “main,” global address realm

Figure 1: Public and private IP address domains

can be easily contacted from anywhere in the network,

because only they have unique, globally routable IP ad-

dresses. Nodes on private networks can connect to other

nodes on the same private network, and they can usually

open TCP or UDP connections to “well-known” nodes

in the global address realm. NATs on the path allocate

temporary public endpoints for outgoing connections, and

translate the addresses and port numbers in packets com-

prising those sessions, while generally blocking all in-

coming traffic unless otherwise specifically configured.

The Internet’s new de facto address architecture is suit-

able for client/server communication in the typical case

when the client is on a private network and the server is in

the global address realm. The architecture makes it diffi-

Overcoming NAT by Relaying

§ Relaying
- use a open (non-

NATed) server to relay
all UDP or TCP
connections

- first both partners
connect to the server

- then, the server relays
all messages

8

Peer-to-Peer Communication Accross Network Address Translators
Bryan Ford, Pyda Srisuresh, Dan Kegel

Connection Reversal

§ If only one peer is behind
NAT
- then the peer behind NAT

always starts connection

§ Use a server to announce
a request for connection
reversal
- periodic check for

connection requests is
necessary

9

Peer-to-Peer Communication Accross Network Address Translators
Bryan Ford, Pyda Srisuresh, Dan Kegel

UDP Hole
Punching

Peer-to-Peer Networks

10

UDP Hole Punching

§ Dan Kegel (1999), NAT and Peer-to-Peer Networking,
Technical Report Caltech

§ A does not know B‘s address
§ Algorithm

- A contacts rendezvous server S and tells his local IP address
- S replies to A with a message containing

• B‘s public and private socket pairs

- A sends UDP packets to both of this addresses
• and stays at the address which works

11

UDP Hole Punching

§ Peers Behind a Common
NAT
- Rendezvous server is used

to tell the local IP addresses
- Test with local IP address

establish the connections in
the local net

12

Figure 4: UDP Hole Punching, Peers Behind a Common NAT

serves the client to be using to talk with it. We refer to the

first pair as the client’s private endpoint and the second

as the client’s public endpoint. The server might obtain

the client’s private endpoint from the client itself in a field

in the body of the client’s registrationmessage, and obtain

the client’s public endpoint from the source IP address and

source UDP port fields in the IP and UDP headers of that

registration message. If the client is not behind a NAT,

then its private and public endpoints should be identical.

A few poorly behaved NATs are known to scan the

body of UDP datagrams for 4-byte fields that look like IP

addresses, and translate them as they would the IP address

fields in the IP header. To be robust against such behav-

ior, applications may wish to obfuscate IP addresses in

messages bodies slightly, for example by transmitting the

one’s complement of the IP address instead of the IP ad-

dress itself. Of course, if the application is encrypting its

messages, then this behavior is not likely to be a problem.

3.2 Establishing Peer-to-Peer Sessions

Suppose client A wants to establish a UDP session di-

rectly with client B. Hole punching proceeds as follows:

1. A initially does not know how to reach B, so A asks

S for help establishing a UDP session with B.

2. S replies to A with a message containing B’s public

and private endpoints. At the same time, S uses its

UDP session with B to send B a connection request

message containingA’s public and private endpoints.

Once these messages are received, A and B know

each other’s public and private endpoints.

3. When A receives B’s public and private endpoints

from S, A starts sending UDP packets to both

of these endpoints, and subsequently “locks in”

whichever endpoint first elicits a valid response from

B. Similarly, when B receives A’s public and pri-

vate endpoints in the forwarded connection request,

B starts sending UDP packets to A at each of A’s

known endpoints, locking in the first endpoint that

works. The order and timing of these messages are

not critical as long as they are asynchronous.

We now consider howUDP hole punching handles each

of three specific network scenarios. In the first situation,

representing the “easy” case, the two clients actually re-

side behind the same NAT, on one private network. In the

second, most common case, the clients reside behind dif-

ferent NATs. In the third scenario, the clients each reside

behind two levels of NAT: a common “first-level” NAT de-

ployed by an ISP for example, and distinct “second-level”

NATs such as consumer NAT routers for home networks.

It is in general difficult or impossible for the applica-

tion itself to determine the exact physical layout of the

network, and thus which of these scenarios (or the many

other possible ones) actually applies at a given time. Pro-

tocols such as STUN [19] can provide some information

about the NATs present on a communication path, but this

informationmay not always be complete or reliable, espe-

cially when multiple levels of NAT are involved. Never-

theless, hole punching works automatically in all of these

scenarios without the application having to know the spe-

cific network organization, as long as the NATs involved

behave in a reasonable fashion. (“Reasonable” behavior

for NATs will be described later in Section 5.)

Peer-to-Peer Communication Accross Network Address
Translators
Bryan Ford, Pyda Srisuresh, Dan Kegel

UDP Hole Punching

§ Peers Behind a Common
NAT
- Rendezvous server is used

to tell the local IP addresses
- Test with local IP address

establish the connections in
the local net

13

Figure 4: UDP Hole Punching, Peers Behind a Common NAT

serves the client to be using to talk with it. We refer to the

first pair as the client’s private endpoint and the second

as the client’s public endpoint. The server might obtain

the client’s private endpoint from the client itself in a field

in the body of the client’s registrationmessage, and obtain

the client’s public endpoint from the source IP address and

source UDP port fields in the IP and UDP headers of that

registration message. If the client is not behind a NAT,

then its private and public endpoints should be identical.

A few poorly behaved NATs are known to scan the

body of UDP datagrams for 4-byte fields that look like IP

addresses, and translate them as they would the IP address

fields in the IP header. To be robust against such behav-

ior, applications may wish to obfuscate IP addresses in

messages bodies slightly, for example by transmitting the

one’s complement of the IP address instead of the IP ad-

dress itself. Of course, if the application is encrypting its

messages, then this behavior is not likely to be a problem.

3.2 Establishing Peer-to-Peer Sessions

Suppose client A wants to establish a UDP session di-

rectly with client B. Hole punching proceeds as follows:

1. A initially does not know how to reach B, so A asks

S for help establishing a UDP session with B.

2. S replies to A with a message containing B’s public

and private endpoints. At the same time, S uses its

UDP session with B to send B a connection request

message containingA’s public and private endpoints.

Once these messages are received, A and B know

each other’s public and private endpoints.

3. When A receives B’s public and private endpoints

from S, A starts sending UDP packets to both

of these endpoints, and subsequently “locks in”

whichever endpoint first elicits a valid response from

B. Similarly, when B receives A’s public and pri-

vate endpoints in the forwarded connection request,

B starts sending UDP packets to A at each of A’s

known endpoints, locking in the first endpoint that

works. The order and timing of these messages are

not critical as long as they are asynchronous.

We now consider howUDP hole punching handles each

of three specific network scenarios. In the first situation,

representing the “easy” case, the two clients actually re-

side behind the same NAT, on one private network. In the

second, most common case, the clients reside behind dif-

ferent NATs. In the third scenario, the clients each reside

behind two levels of NAT: a common “first-level” NAT de-

ployed by an ISP for example, and distinct “second-level”

NATs such as consumer NAT routers for home networks.

It is in general difficult or impossible for the applica-

tion itself to determine the exact physical layout of the

network, and thus which of these scenarios (or the many

other possible ones) actually applies at a given time. Pro-

tocols such as STUN [19] can provide some information

about the NATs present on a communication path, but this

informationmay not always be complete or reliable, espe-

cially when multiple levels of NAT are involved. Never-

theless, hole punching works automatically in all of these

scenarios without the application having to know the spe-

cific network organization, as long as the NATs involved

behave in a reasonable fashion. (“Reasonable” behavior

for NATs will be described later in Section 5.)

Peer-to-Peer Communication Accross Network Address
Translators
Bryan Ford, Pyda Srisuresh, Dan Kegel

UDP Hole Punching

§ Peers Behind a Common
NAT
- Rendezvous server is used

to tell the local IP addresses
- Test with local IP address

establish the connections in
the local net

14

Figure 4: UDP Hole Punching, Peers Behind a Common NAT

serves the client to be using to talk with it. We refer to the

first pair as the client’s private endpoint and the second

as the client’s public endpoint. The server might obtain

the client’s private endpoint from the client itself in a field

in the body of the client’s registrationmessage, and obtain

the client’s public endpoint from the source IP address and

source UDP port fields in the IP and UDP headers of that

registration message. If the client is not behind a NAT,

then its private and public endpoints should be identical.

A few poorly behaved NATs are known to scan the

body of UDP datagrams for 4-byte fields that look like IP

addresses, and translate them as they would the IP address

fields in the IP header. To be robust against such behav-

ior, applications may wish to obfuscate IP addresses in

messages bodies slightly, for example by transmitting the

one’s complement of the IP address instead of the IP ad-

dress itself. Of course, if the application is encrypting its

messages, then this behavior is not likely to be a problem.

3.2 Establishing Peer-to-Peer Sessions

Suppose client A wants to establish a UDP session di-

rectly with client B. Hole punching proceeds as follows:

1. A initially does not know how to reach B, so A asks

S for help establishing a UDP session with B.

2. S replies to A with a message containing B’s public

and private endpoints. At the same time, S uses its

UDP session with B to send B a connection request

message containingA’s public and private endpoints.

Once these messages are received, A and B know

each other’s public and private endpoints.

3. When A receives B’s public and private endpoints

from S, A starts sending UDP packets to both

of these endpoints, and subsequently “locks in”

whichever endpoint first elicits a valid response from

B. Similarly, when B receives A’s public and pri-

vate endpoints in the forwarded connection request,

B starts sending UDP packets to A at each of A’s

known endpoints, locking in the first endpoint that

works. The order and timing of these messages are

not critical as long as they are asynchronous.

We now consider howUDP hole punching handles each

of three specific network scenarios. In the first situation,

representing the “easy” case, the two clients actually re-

side behind the same NAT, on one private network. In the

second, most common case, the clients reside behind dif-

ferent NATs. In the third scenario, the clients each reside

behind two levels of NAT: a common “first-level” NAT de-

ployed by an ISP for example, and distinct “second-level”

NATs such as consumer NAT routers for home networks.

It is in general difficult or impossible for the applica-

tion itself to determine the exact physical layout of the

network, and thus which of these scenarios (or the many

other possible ones) actually applies at a given time. Pro-

tocols such as STUN [19] can provide some information

about the NATs present on a communication path, but this

informationmay not always be complete or reliable, espe-

cially when multiple levels of NAT are involved. Never-

theless, hole punching works automatically in all of these

scenarios without the application having to know the spe-

cific network organization, as long as the NATs involved

behave in a reasonable fashion. (“Reasonable” behavior

for NATs will be described later in Section 5.)

Peer-to-Peer Communication Accross Network Address
Translators
Bryan Ford, Pyda Srisuresh, Dan Kegel

UDP Hole Punching

§ Peers Behind Different
NATs
- Rendezvous server is used

to tell the NAT IP
addresses

- Test with NAT IP address
establishes the
connections

- Peers reuse the port from
the Rendezvous server

15
Figure 5: UDP Hole Punching, Peers Behind Different NATs

3.3 Peers Behind a Common NAT

First consider the simple scenario in which the two clients

(probably unknowingly) happen to reside behind the same

NAT, and are therefore located in the same private IP ad-

dress realm, as shown in Figure 4. Client A has estab-

lished a UDP session with server S, to which the com-

mon NAT has assigned its own public port number 62000.

Client B has similarly established a session with S, to

which the NAT has assigned public port number 62005.

Suppose that client A uses the hole punching technique

outlined above to establish a UDP session with B, using

server S as an introducer. Client A sends S a message

requesting a connection to B. S responds to A with B’s

public and private endpoints, and also forwards A’s pub-

lic and private endpoints to B. Both clients then attempt

to send UDP datagrams to each other directly at each of

these endpoints. The messages directed to the public end-

points may or may not reach their destination, depending

on whether or not the NAT supports hairpin translation as

described below in Section 3.5. The messages directed at

the private endpoints do reach their destinations, however,

and since this direct route through the private network is

likely to be faster than an indirect route through the NAT

anyway, the clients are most likely to select the private

endpoints for subsequent regular communication.

By assuming that NATs support hairpin translation, the

application might dispense with the complexity of trying

private as well as public endpoints, at the cost of making

local communication behind a common NAT unnecessar-

ily pass through the NAT. As our results in Section 6 show,

however, hairpin translation is still much less common

among existing NATs than are other “P2P-friendly” NAT

behaviors. For now, therefore, applications may benefit

substantially by using both public and private endpoints.

3.4 Peers Behind Different NATs

Suppose clients A and B have private IP addresses be-

hind different NATs, as shown in Figure 5. A and B have

each initiated UDP communication sessions from their lo-

cal port 4321 to port 1234 on server S. In handling these

outbound sessions, NAT A has assigned port 62000 at its

own public IP address, 155.99.25.11, for the use of A’s

session with S, and NAT B has assigned port 31000 at its

IP address, 138.76.29.7, to B’s session with S.

In A’s registration message to S, A reports its private

endpoint to S as 10.0.0.1:4321, where 10.0.0.1 is A’s IP

address on its own private network. S records A’s re-

ported private endpoint, along with A’s public endpoint

as observed by S itself. A’s public endpoint in this case

is 155.99.25.11:62000, the temporary endpoint assigned

to the session by the NAT. Similarly, when client B regis-

ters, S records B’s private endpoint as 10.1.1.3:4321 and

B’s public endpoint as 138.76.29.7:31000.

Now client A follows the hole punching procedure de-

scribed above to establish a UDP communication session

directly withB. First,A sends a request message to S ask-

ing for help connecting with B. In response, S sends B’s

public and private endpoints to A, and sends A’s public

and private endpoints to B. A and B each start trying to

send UDP datagrams directly to each of these endpoints.

Since A and B are on different private networks and

their respective private IP addresses are not globally

routable, the messages sent to these endpoints will reach

either the wrong host or no host at all. Because many

Peer-to-Peer Communication
Accross Network Address
Translators
Bryan Ford, Pyda Srisuresh,
Dan Kegel

UDP Hole Punching

§ Peers Behind Different
NATs
- Rendezvous server is used

to tell the NAT IP
addresses

- Test with NAT IP address
establishes the
connections

- Peers reuse the port from
the Rendezvous server

16

Figure 5: UDP Hole Punching, Peers Behind Different NATs

3.3 Peers Behind a Common NAT

First consider the simple scenario in which the two clients

(probably unknowingly) happen to reside behind the same

NAT, and are therefore located in the same private IP ad-

dress realm, as shown in Figure 4. Client A has estab-

lished a UDP session with server S, to which the com-

mon NAT has assigned its own public port number 62000.

Client B has similarly established a session with S, to

which the NAT has assigned public port number 62005.

Suppose that client A uses the hole punching technique

outlined above to establish a UDP session with B, using

server S as an introducer. Client A sends S a message

requesting a connection to B. S responds to A with B’s

public and private endpoints, and also forwards A’s pub-

lic and private endpoints to B. Both clients then attempt

to send UDP datagrams to each other directly at each of

these endpoints. The messages directed to the public end-

points may or may not reach their destination, depending

on whether or not the NAT supports hairpin translation as

described below in Section 3.5. The messages directed at

the private endpoints do reach their destinations, however,

and since this direct route through the private network is

likely to be faster than an indirect route through the NAT

anyway, the clients are most likely to select the private

endpoints for subsequent regular communication.

By assuming that NATs support hairpin translation, the

application might dispense with the complexity of trying

private as well as public endpoints, at the cost of making

local communication behind a common NAT unnecessar-

ily pass through the NAT. As our results in Section 6 show,

however, hairpin translation is still much less common

among existing NATs than are other “P2P-friendly” NAT

behaviors. For now, therefore, applications may benefit

substantially by using both public and private endpoints.

3.4 Peers Behind Different NATs

Suppose clients A and B have private IP addresses be-

hind different NATs, as shown in Figure 5. A and B have

each initiated UDP communication sessions from their lo-

cal port 4321 to port 1234 on server S. In handling these

outbound sessions, NAT A has assigned port 62000 at its

own public IP address, 155.99.25.11, for the use of A’s

session with S, and NAT B has assigned port 31000 at its

IP address, 138.76.29.7, to B’s session with S.

In A’s registration message to S, A reports its private

endpoint to S as 10.0.0.1:4321, where 10.0.0.1 is A’s IP

address on its own private network. S records A’s re-

ported private endpoint, along with A’s public endpoint

as observed by S itself. A’s public endpoint in this case

is 155.99.25.11:62000, the temporary endpoint assigned

to the session by the NAT. Similarly, when client B regis-

ters, S records B’s private endpoint as 10.1.1.3:4321 and

B’s public endpoint as 138.76.29.7:31000.

Now client A follows the hole punching procedure de-

scribed above to establish a UDP communication session

directly withB. First,A sends a request message to S ask-

ing for help connecting with B. In response, S sends B’s

public and private endpoints to A, and sends A’s public

and private endpoints to B. A and B each start trying to

send UDP datagrams directly to each of these endpoints.

Since A and B are on different private networks and

their respective private IP addresses are not globally

routable, the messages sent to these endpoints will reach

either the wrong host or no host at all. Because many

Peer-to-Peer Communication
Accross Network Address
Translators
Bryan Ford, Pyda Srisuresh,
Dan Kegel

UDP Hole Punching

§ Peers Behind Different
NATs
- Rendezvous server is used

to tell the NAT IP
addresses

- Test with NAT IP address
establishes the
connections

- Peers reuse the port from
the Rendezvous server

17

Figure 5: UDP Hole Punching, Peers Behind Different NATs

3.3 Peers Behind a Common NAT

First consider the simple scenario in which the two clients

(probably unknowingly) happen to reside behind the same

NAT, and are therefore located in the same private IP ad-

dress realm, as shown in Figure 4. Client A has estab-

lished a UDP session with server S, to which the com-

mon NAT has assigned its own public port number 62000.

Client B has similarly established a session with S, to

which the NAT has assigned public port number 62005.

Suppose that client A uses the hole punching technique

outlined above to establish a UDP session with B, using

server S as an introducer. Client A sends S a message

requesting a connection to B. S responds to A with B’s

public and private endpoints, and also forwards A’s pub-

lic and private endpoints to B. Both clients then attempt

to send UDP datagrams to each other directly at each of

these endpoints. The messages directed to the public end-

points may or may not reach their destination, depending

on whether or not the NAT supports hairpin translation as

described below in Section 3.5. The messages directed at

the private endpoints do reach their destinations, however,

and since this direct route through the private network is

likely to be faster than an indirect route through the NAT

anyway, the clients are most likely to select the private

endpoints for subsequent regular communication.

By assuming that NATs support hairpin translation, the

application might dispense with the complexity of trying

private as well as public endpoints, at the cost of making

local communication behind a common NAT unnecessar-

ily pass through the NAT. As our results in Section 6 show,

however, hairpin translation is still much less common

among existing NATs than are other “P2P-friendly” NAT

behaviors. For now, therefore, applications may benefit

substantially by using both public and private endpoints.

3.4 Peers Behind Different NATs

Suppose clients A and B have private IP addresses be-

hind different NATs, as shown in Figure 5. A and B have

each initiated UDP communication sessions from their lo-

cal port 4321 to port 1234 on server S. In handling these

outbound sessions, NAT A has assigned port 62000 at its

own public IP address, 155.99.25.11, for the use of A’s

session with S, and NAT B has assigned port 31000 at its

IP address, 138.76.29.7, to B’s session with S.

In A’s registration message to S, A reports its private

endpoint to S as 10.0.0.1:4321, where 10.0.0.1 is A’s IP

address on its own private network. S records A’s re-

ported private endpoint, along with A’s public endpoint

as observed by S itself. A’s public endpoint in this case

is 155.99.25.11:62000, the temporary endpoint assigned

to the session by the NAT. Similarly, when client B regis-

ters, S records B’s private endpoint as 10.1.1.3:4321 and

B’s public endpoint as 138.76.29.7:31000.

Now client A follows the hole punching procedure de-

scribed above to establish a UDP communication session

directly withB. First,A sends a request message to S ask-

ing for help connecting with B. In response, S sends B’s

public and private endpoints to A, and sends A’s public

and private endpoints to B. A and B each start trying to

send UDP datagrams directly to each of these endpoints.

Since A and B are on different private networks and

their respective private IP addresses are not globally

routable, the messages sent to these endpoints will reach

either the wrong host or no host at all. Because many

Peer-to-Peer Communication
Accross Network Address
Translators
Bryan Ford, Pyda Srisuresh,
Dan Kegel

Simple traversal of UDP over NATs
(STUN)

§ RFC 3489, J. Rosenberg, C. Huitema, R. Mahy, STUN -
Simple Traversal of User Datagram Protocol Through
Network Address Translators (NATs), 2003

§ Client-Server Protocol
- Uses open client to categorize the NAT router

§ UDP connection can be established with open client
- Tells both clients the external ports and one partner establishes

the connection

§ Works for Full Cone, Restricted Cone and Port
Restricted Cone
- Both clients behind NAT router can initialize the connection
- The Rendezvous server has to transmit the external addresses

§ Does not work for Symmetric NATs

18

STUN

19

from: http://en.wikipedia.org/wiki/STUN

§ Client
communicates
to at least two
open STUN
server

NAT
types

TCP Hole
Punching

Peer-to-Peer Networks

20

TCP versus UDP Hole Punching

21

Category UDP TCP

Connection? no yes

Symmetry yes
no

client uses „connect“, server uses
„accept“ or „listen“

Acknowledgm
ents no

yes
must have the correct sequence

numbers

P2P-NAT
Peer-to-Peer Communication Accross Network Address Translators
Bryan Ford, Pyda Srisuresh, Dan Kegel

§ Prerequisite
- change kernel to allow to listen and connect TCP connections at the same time
- use a Rendezvous Server S
- Client A and client B have TCP sessions with s

§ P2P-NAT
- Client A asks S about B‘s addresses
- Server S tells client A and client B the public and private addresses (IP-

address and port number) of A and B
- From the same local TCP ports used to register with S

• A and B synchronously make outgoing connection attempts to the others‘ public
and private endpoints

- A and B
• wait for outgoing attempts to succeed
• wait for incoming connections to appear
• if one outgoing connection attempt fails („connection reset“, „host unreachable“)

then the host retries after a short delay

- Use the first established connection
- When a TCP connection is made the hosts authenticate themselves

22

P2P-NAT

23

§ Peer-to-Peer
Communication
Accross Network
Address Translators

§ Bryan Ford, Pyda
Srisuresh, Dan
Kegel

P2P-NAT
Peer-to-Peer Communication Accross Network Address Translators
Bryan Ford, Pyda Srisuresh, Dan Kegel

§ Behavior for nice NAT-routers of A
- The NAT router of A learns of outgoing TCP-connection when A

contacts B using the public address
• A has punched a hole in its NAT

- A‘s first attempts may bounce from B‘s NAT router
- B‘s connection attempt through A‘s NAT hole is successful
- A is answering to B‘s connection attempt
- B‘s NAT router thinks that the connection is a standard client server

§ Some packets will be dropped by the NAT routers in any
case

§ This connection attempt may also work if B has punched a
hole in his NAT router before A
- The client with the weaker NAT router is the server in the TCP

connection

24

P2P-Nat
Problems with Acks?

§ Suppose A has punched the hole in his router
§ A sends SYN-packet
§ but receives a SYN packet from B without Ack

- so the first SYN from A must be ignored

§ A replies with SYN-ACK to B
§ B replies with ACK to A

- all is fine then
§ Alternatively:

- A might create a new stream socket associated with B‘s incoming
connection start

• a different stream socket from the socket that A hole punching TCP
SYN message

• this is regarded as a failed connection attempt
- Also results in a working connection

25

P2P-NAT
The Lucky (?) Case

§ What if both clients A and B succeed synchronously?
§ When both clients answere to the SYN with a SYN-

ACK
- results in simultaneous TCP open

§ Can result in the failure of the connection
- depends on whether the TCP implementation accepts a

simultaneous successful „accept()“ and „connect()“
operation

§ Then, the TCP connection should work correctly
- if the TCP implementation complies with RFC 793

§ The TCP connection has been „magically“ created
itself from the wire
- out of nowhere two fitting SYN-ACKs have been created.

26

P2P-NAT Working Principle

27

Picture from
Characterization
and Measurement
of TCP Traversal
through NATs and
Firewalls
Saikat Guha, Paul
Francis

Success Rate of UDP Hole Punching
and P2P-NAT (2005)

28

Peer-to-Peer Communication Accross Network Address Translators
Bryan Ford, Pyda Srisuresh, Dan Kegel

TCP Hole Punching with Small TTL

29

§ NAT Servers can be punched with TCP Sync
packets of small TTL
- message passes NAT server
- listening to outgoing messages helps to learn the

Sequence Number

§ Technique used by
- STUNT#1, #2
- NATBlaster

STUNT

30

§ Both endpoints produce a SYN
packet with small TTL

- Packet passes NAT-router, yet does
not reach target

§ Both clients learn their own (!)
sequence number

§ STUNT (Rendezvous) server
produces a spoofed SYNACK

- with correct sequence number to
both clients

§ Both clients respond with ACK
§ Hopefully, connection is established
§ Problems:

- Choice of TTL. Not possible if the
two outermost NATs share an
interface

- ICMP-packet can be interpreted as
fatal error

- NAT may change the sequence
number, spoofed SYNACK might be
„out of window“

- Third-party spoofer is necessary

Eppinger, TCP Connections for P2P Apps: A Software Ap-
proach to Solving the NAT Problem. Tech. Rep. CMU-
ISRI-05-104, Carnegie Mellon University, Pittsburgh, PA,
Jan. 2005.

STUNT (version 2)

31

§ Endpoints A produce a SYN packet
with small TTL

- Packet passes NAT-router, yet does
not reach target

§ Client A aborts attemption connect
- accepts inbound connections

§ Client B
- learns address from Rendezvous

server
- initiates regular connection to A

§ Client A answers with SYNACK
- Hopefully, connection is established

§ Problems:
- Choice of TTL.
- ICMP-packet must be interpreted as

fatal error or
- NAT must accept an inbound SYN

following an outbound SYN
• unusual situation

Guha, Takeda, Francis, NUTSS: A SIP-based
Approach to UDP and TCP Network Connectivity. In
Proceedings of SIGCOMM’04 Workshops (Portland, OR,
Aug. 2004), pp. 43– 48.

NATBlaster

32

§ Both endpoints produce low TTL SYN-
packets

- passes NAT router, but does not reach
other NAT router

§ Learn sequence number for own
connection

- exchange this information using
Rendezvous server

§ Both endpoints produce SYN-ACK
packets

- Both endpoints answer with ACKs
- Connection established

§ Problems
- Choice of TTL
- NATs must ignore ICMP-packet
- NAT may change sequence numbers
- NAT must allow symmetric SYN-Acks after

own SYN packet
• unusual

Biggadie, Ferullo, Wilson, Perrig, NATBLASTER:
Establishing TCP connections between hosts behind NATs.
In Proceedings of ACM SIGCOMM, ASIA Workshop
(Beijing, China, Apr. 2005).

OS Issues of TCP Hole Punching

33

from Characterization and Measurement of TCP Traversal
through NATs and Firewalls, Saikat Guha, Paul Francis

Port Prediction

34

§ NAT router changes port addresses
for incoming connections

§ A knows the type of NAT
- learns the mapping from the

Rendezvous (STUNT) server
- predicts its mapping

§ B also predicts his mapping
§ Both clients send SYN packets to the

predicted ports
§ Usually, NAT servers can be very well

predicted, e.g.
- outgoing port is 4901.
- then the incoming port is 4902

• if 4902 is not used, then it is 4903
- and so on....

from Characterization and Measurement of TCP Traversal
through NATs and Firewalls, Saikat Guha, Paul Francis

How Skype Punches Holes

35

§ An Experimental Study of the Skype Peer-to-
Peer VoIP System, Saikat Guha, Neil Daswani,
Ravi Jain
- Skype does not publish its technique
- Yet, behavior can be easily tracked

§ Techniques
- Rendezvous Server
- UDP Hole Punching
- Port scans/prediction
- Fallback: UDP Relay Server

• success rate of Skype very high, seldomly used

Universal Plug and Play

36

§ The UPnP allows device-to-device networking
- personal computers, networked home appliances, consumer electronics

devices wireless devices
- distributed, open architecture protocol based on established standards

such as the Internet Protocol Suite (TCP/IP), HTTP, XML, and SOAP.
- UPnP control points are devices which use UPnP protocols to control

UPnP devices.

§ Zero configuration networking.
- UPnP compatible device can dynamically join a network
- obtain an IP address
- announce its name
- convey its capabilities upon request
- learn about the presence and capabilities of other devices

§ DHCP, DNS are optional
§ NAT traversal is implimented as Internet Gateway Device

Protocol (IGD Protocol)

Internet Gateway Device Protocol

§ Features
- learns the public (external) IP address
- request for a new public IP address
- enumerate existing port mappings
- add and remove port mappings
- assign lease times to mappings

§ NAT-routers
- need to comply to UPnP to enable these features
- some routers need to be configured to allow UPnP

§ Risks
- it is possible to attack a whole network

• by a trojan
• vulnerability of the router‘s implementation of IGD

37

Peer-to-Peer Networks
16 Hole Punching

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

